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I. INTRODUCTION

The research grant NAG 1-500 entitled "Semiconductor Superlattice
Photodetectors" was awarded to the University of Illinois at Urbana-Champaign
by National Aeronautics and Space Administration-Langley Research Center
on June 27, 1984. The grant was continued on July 1, 1985 and extended
to December 31, 1986. Dr. Ivan Clark is the Technical Officer, and
Mr. John F. Royall is the Grants Officer.

This report is the final report.

1. Period:
June 1, 1984 to December 31, 1986
2. Reporting Date:
January 10, 1987.
3. Technical Personnel:
S. L. Chuang Assistant Professor of Electrical and Computer
Engineering
J. J. Coleman Professor of Electrical and Computer Engineering
K. Hess Professor of Electrical and Computer Engineering and
Research Professor of Coordinated Science Laboratory
J. P. Leburton Assistant Professor of Electrical and Computer
Engineering and Research Assistant Professor of
Coordinated Science Laboratory

Two research assistants



II. TECHNICAL PROGRESS

Superlattice photodetectors have been investigated during the past
two and one-half years. We have studied a few major physical processes
in the quantum-well heterostructures related to the photon detection and
electron conduction mechanisms, namely, the impact ionization of hot
electrons, the tunneling-assisted process, the field effect on the wave
functions and the energy levels of the electrons, and the optical absorption
with and without the phonon assistance. The results are summarized
below. The details are reported in the appendix where reprints and

preprints of papers supported by this grant are included.

1. Superlattice photomultiplier

Tunneling—-assisted impact ionization across the conduction-band-edge
discontinuity of a quantum-well heterostructure is investigated and applied
to a new superlattice structure (Appendix A). We consider multiquantum-well
structures where the quantum-well regions are heavily doped and the
undoped barrier regions are essentially insulating. Incident hot electrons
due to the applied electric field perpendicular to the heterointerface
interact with the two-dimensional electrons confined to the quantum wells
through Coulomb force. The resultant electrons can either have enough
energy to get out of the wells or tunnel through the triangular barriers. A
new analytical approximation for the impact ionization rate is given which
compares favorably with numerical results. The tunneling-assisted impact
ionization rates and the ionization coefficients are calculated. It is
shown that the tunneling effect reduces the ionization threshold and

enhances the ionization rate significantly. Some experimental results of



this single-carrier type photomultiplier have been reported by Capasso's
group at AT&T Bell Laboratories.

We also carried out the variational calculations of subband eigenstates
in an infinite quantum well with an applied electric field using Gram-
Schmidt orthogonalized trial wave functions {Appendix B). The results
agree very well with the exact numerical solutions even up to 1200 kV/cm. We
also show that for increasing electric fields the energy of the ground
state decreases, while that of higher subband states increases slightly
up to 1000 kV/cm and then decreases for a well size of 100 A.

We have also performed the exact numerical calculations for the energy
level and the resonance width of quasibound states in a quantum well with
an applied electric field (Quantum-well Stark Resonance) by solving the
Schrodinger equation directly (Appendix C). This calculation gives both
the resonance positions and widths for the complex eigenvalue Eb—ir72 of
the system. Our theory also shows that the energy shifts of the ground
states for the electrons and holes have the same behavior in high fields
without any turnaround phenomenon, contrary to the results of Austin and
Jaros.

2. Superlattice Photodetector Based on the Real Space Transfer Mechanism

We have investigated the free carrier absorption process of a superlattice

photodetector which makes use of the real space transfer mechanism. In
particular, we have formulated and numerically computed the free carrier
absorption coefficient for bulk GaAs in which we considered a second-
order process involving both a photon and a phonon. Additionally, we

carried out the computations for the free carrier absorption coefficient



in a quantum well for the above cited second-order process involving a
photon and a phonon.

We also carried out new calculations for the electric field dependence
of the intersubband optical absorption within the conduction band of a
quantum well (Appendix D). We show that for increasing electric field the
absorption peak corresponding to the transition of states 1 » 2 is shifted
higher in energy and the peak amplitude is increased. These features are
different from those of the exciton absorption. It is also found that
the forbidden transition for states 1 » 3 when F = 0 is possible when F
is nonzero. These results are significant for applications to infrared photo-
detectors and infrared lasers making use of the intersubband transitions

in the quantum wells.



IV. PUBLICATIONS
The following manuscripts submitted for publication were supported
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Tunneling-assisted impact ionization across the conduction-band-edge discontinuity of
quantum-well heterostructures is investigated and applied to a new superlattice structure. We
consider multiquantum-well structures where the quantum-well regions are heavily doped and
the undoped barrier regions are essentially insulating. Incident hot electrons due to the applied
electric field perpendicular to the heterointerface interact with the two-dimensional electrons
confined to the quantum wells through Coulomb force. The resultant electrons can either have
enough energy to get out of the wells or tunnel through the triangular barriers. A new
analytical approximation for the impact ionization rate is given which compares favorably with
numerical results. The tunneling-assisted impact ionization rates and the ionization coefficients

are calculated. It is shown that the tunneling effect reduces the ionization threshold and

enhances the ionization rate significantly.

I. INTRODUCTION

Superlattice photodetectors have been of interest to
many researchers because they involve new device physics
and have the potential of minimizing the excess noise fac-
tor.'™ The basic concept is based on the well-known fact that
to minimize the excess noise due to the feedback process in
an avalanche photodiode, one requires that the impact ioni-
zation coefficients of the electrons and the holes differ great-
ly, and the carrier type with the larger ionization coefficient
initiates the impact ionization process.>’ Since the ioniza-
tion coeflicients, a and 8, of the electrons and holes, respec-
tively, can be very close, one tries to artificially enhance the
a/B or B /a ratio using superlattice structures.'™ These in-
clude a multiquantum-well structure,' a staircase photo-
multiplier,® etc. One notes that most of these proposed de-
vices deal with impact ionization across the energy band gap
E,. We have studied recently the possibilities of a superlat-
tice photomultiplier which makes use of the impact ioniza-
tion across the conduction-band-edge discontinuity AE, .3
Independent experimental work on this process has also
been reported recently,” where both Al ,4Ing g, As/
Gag .47 Ing 53 As and A1Sb/GaSb superlattices are considered.

The muitiquantum-well device we consider is shown in

Fig. 1, where the GaAs regions are doped with donors N,

and the Al, Ga, _, As regions are undoped.® Ohmic contacts
are provided to the GaAs regions for repienishment of elec-
trons in the wells once they are impact ionized by incident
electrons which are heated up in the AlGaAs regions by the
external electric field. A theoretical study of the impact ioni-
zation in this structure has been done numerically in Ref. 8
}\rithout considering the tunneling effect. Since the impact
ionization process is due to the ekectromconfined to the wells
and virtually no holes are invojved, tzz electron ionization
coeflicient @ will be much lagger than the hole ionization
coefficient 5. In this paper, wé aiso develop an anlytical ap-
proximation for the impact'iénization of electrons from the

previous numerical approach. We demonstrate very good

. . . |
' agreement between the two methods. On this basis, tunnel- 1
" ing-assisted impact ionization across the band-edge discon- -

tinuity is calculated. Previous studies,'®!! inciuding the

pioneering work of Keldysh and Kyuregyan, involve mainly

. . ‘l ’
* quantum wells and compare its results with those of our:

tunneling-assisted impact ionization across the energy gap °

‘E,. We include Fowler-Norheim tunneling'*'* by using a

numerical approach involving Airy functions instead of us-

ing the WKB method since the WKB method will not be

appropriate when the energy of the electron is close to the

barrier height (AE, in this case). A comparison of the re-

sults using Airy functions and those for the WKB method is
' made. It is shown that tunneling reduces the threshold ener-
! gy for impact ionization and enhances the ionization rate,
l\ especially at the low-energy side. Numerical results for the
! electron ionization coefficient o are then presented with and
\( without the tunneling effect. The multiplication factor is also
i shown versus the applied voltage.

N

A!.‘ Ga 1% As
n-GaAs
FIG. . Geometrical configuration of a multiquantum-well structure exhi-

biting impact ionization across the conduction-band-edge discontinuity for
a solid-state photomultiplier.
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W. THEORY

In this section, we present (in Sec. 1I A) an analytical
approximation for the impact ionizanqn of electrons con-
fined to quantum wells excluding funnclmg e_ﬂ’ects. Wc com-
pared the results with those obtained by using a direct nu-
merical approach from Ref. 8. We then include the tunneling
effect in the impact ionization process in Sec. II B.

A. Analytical approximation for the average impact
ionization rate

The total transition rate per unit volume P,, between the
incident hot electrons in the free states and the cold electrons
confined to the quantum wells is given by?

1
Po=23333
k, Ky ¥ K}
X P k) fka) [1 = fCRD [T =fk3)] (D)

where
PLt = TR 1 + B~ BB @)

The square of the matrix element |{12|H,|1'2')|? due to
Coulomb interactions has been calculated in Ref. 8 where
the initial state consists of electron 1 in free state above the
well and electron 2 in bound state inside the well. The final
state consists of both electron 1’ and electron 2 in free states
above the well. The average ionization rate (1/7) is given by
Eq. (25) of Ref. 8:

< 1 ) P dko, e\
T ny ir (Zm:k, T, )

Xex( ks ) 1
P 2m*k, T, ] 7(Eq)’

where n, is the concentration of the incident electrons, m} is
the effective mass in the AlGaAs region, and

1 _ 5 4mre’ (&’L )2 J' dk,,
T(Ey) < fE\L (2m)L,,
X flky,) [S(kikgh) + S(kpkz) ] . (4)

The summation is over all the occupied subbands in the wells
and £, is the energy of the incident electron measured from
the conduction-band edge of the barrier region. All param-
eters are defined as in Ref. 8. An effective well width L,, is
used to account for the finite barrier height.® The integral

S(k,,k,) due to the electron-electron interactions is defined
as

S(K,ky) =f dki
Ky + kyy = kipk <k (277)°
5(E,+E,—E| —E})
Ukl—k”z*’qz]z ks-k|+k,-—k{’
(5)
where the range of integration for & ;, is limited since both

(3)

ki, and k5, mustbe >k ;, forelectrons 1’ and 2’ to get out of

wells if the tunneling effect is not included. The screening
parameter ¢ has been discussed in Ref. 8. The above integral

!
has also been evaluated numerically in Ref. 8 where k, has

both transverse component Kk, and z-component
+z(nw/L,,). We know that k,, is limited by the doping
concentration which determines the Fermi energy £, in the
wells,

I if 0<ky <K
ky) = 6a)-
Stk [0 otherwise (6a).
Kip =\/(2m‘/ﬁT)E, —~ (nw/L,, )%, (6b):

where n refers to the nth subband. The electron concentra-
tion is

n=Np=| AEQEME=3N,, N
Egn n
where
* -—
o= m;’nL,,, kaTIn(1 + &5~ 57Ty
m*
= Ep —E,, 8)
n-ﬁ’L,,.( r = Fo) (

(for Ex — Eg, » k3 T) is the electron concentration in the
nth subband and £, is the energy level of the nth subband.

" Since 7k, is the momentum of the incident hot electrons
* which is usually much larger than the momentum of the

electrons in the wells, and k, is essentially directed in the z

FIG. 2. A momentum space diagram illustrating the range of integrations
for k; . Because of both energy and momentum conservation, the four wave
vectors k,, K, ki, and k; lie on a spherical surface in the momentum space
assuming parabolic band structures.
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direction, k, = 2k,, we thus assume

A (T s

S(ky k) =S(k, .2k, ) , S Yo
[ . L V)

and ignore the transverse components k,, in the integrand of
the integral S(k,.k,). Using the geometrical configuration
shown in Fig. 2 in which k,, k,, k{, and k; lie on the same
spherical surface® due to both energy and momentum con-

J

9

S(2k,, 2k,,)

(ki + kyp — 2k ,)

' servation, we integrate Eq. (5) analytically noting that
8(E,+E,—~E;—E})
= (m*/®)8[ (ki — k) (k; —k{)],
~ and making a change of variable
L k=ki -k, (an
‘ we obtain \

(10)

ki, +k;,

m.
=)
= ( me O\ k= k|
8 #q* ) (ki — Ky |* + @7
0 otherwise

if k1 <Ky

In the first case, the condition k,, <k, < (ky, + Ky, )/2 cor-
responds to the integral over the shaded region in Fig. 2. If
the threshold value k ,, is <k,,, the integral will be over the
whole spherical surface® and results in the second Eq. (12b).
The threshold wave number k& |, for electrons 1° and 2’ is
given by

ki =y2miAE /R (13)

which is larger than k,, usually where the voltage drop
across the quantum-well region is assumed to be zero since it
is heavily doped and ohmic contacted. Here m} (or m*) is
the average effective mass in the GaAs region with the non-
parabolic effect included.® Thus, the threshoid energy of the
incident hot electrons for impact ionization E;, measured
from the conduction-band edge in the barrier region, is cal-
culated from

kyp =k, + k3, = kyy 32k — Ky s (14)
E, = (#/2m 2k}, — ko) — AE, . (15)

A
If one ignores k., = 7/L,, of the ground state, we have
E.=3AE,. Thus, the threshold energy E; is in general
=3AFE orless when k,, is included. The integration over k,,

is easily done using the distribution function f(k,,) in (6)
and the fact that S(k ,k,) is independent of k,,.

1 T dze’ (L,,, )’ Ko
T( Eo) n ﬁzéz L 4‘”’an

x S(k ,EH-)+S(k ,-2"—"’) :

[ "L, "L,

where E, = E,, since the incident electron 1 is assumed tobe
traveling in the z direction only. The last integral over kg
(or Ey) in (3) to obtain the average ionization rate (1/7) is
calculated numerically by Simpson's rule. We ignore k,, in

the integrand of Eq. (5) which means that we assume that all
electrons in the same subband in the quantum wells are ion-

(16)

ized at the same rate independent of k,,. Numerical resuits

as shown in Fig. 3(a) indicate that this is an excellent ap-
proximation which speeds up our computation by more than
a factor of 100. The resuits using the direct numerical inte-

[(kiy — ko) (kyy — K 3) +q2][(klz —~ k) (ki —ky,) +‘12] 2

if klz <k €h <

(12a)

(12b)
(12¢)

r

i TONIZATION
RATE {i/sec)

otk

.......;;-‘;;;&m&::;gg‘;s‘ééﬁa56 3333
'y ooo°°°
I

o] 05 10 15,

ENERGY OF INCIDENT ELECTRONS (ev)
(a)

TONIZATION
RATE (I/sec)
]
Iou -

s

0, 00000%000° x
‘Hx,nl‘"':::;;t‘,85588566 sod
xx mo"o

109

Eo

i

1.5

1 L
. 05 o
{ ENERGY OF INCIDENT ELECTRONS (eV)

(o)

FIG. 3. (a) The impact ionization rate [ 1/7(E,) ] as a functiorrof the inci-
dent electron energy £, measured from the conduction-band edge of the
AlGaAs region using the analytical approximation (12) in Eq. (4).
(circles = first subband, crosses = second subband, dashed line = third
subband, solid line = total.) (b} 1/7( E,) calculated using direct numerical
integrations of multipie integrals as has been done in Fig. 4(b) of Ref. 8.




grations® of multiple variables are shown in Fig. 3(b) for
comparison. It is clear that our analytical approximations
lead to very accurate results and eliminate the fluctuations
due to numerical instabilities in the previous numerical inte-
grations for all subbands as shown in Fig. 3(b).

B. Tunneling-assisted impact ionization

The impact ionization of electrons in the wells which
subsequently tunnel through the mangular barrier is calcu-

lated from ‘ﬁ; ﬁz
.,——225_2 T(E )T(E ) f1k,) flk,)
k, k;

X [1=fKD][1=fk)]

where T(E {) and T(E ;) are the transmission coefficients
through a triangular barrier with a barrier height ¥, = AE,
as shown in Fig. 4 at energies £ | and E';, respectively. The
tunneling coefficient using the WKB method is given by'?

(17

| TRANSMISSION
' COEFFICIENTS

1.0
0.8f-
Numericol
Solution
0.6 (Using Airy
Functions)
ak // Fowler -Nordheim
0. /\ Tunnehng
, / \WKB 1
r/\ | Approximation ? °
o2 // 1 AE
/4mY & ¢
/ \ b
0.0 ] il I ! } £
1i 0.24 ’E 0.26 0.28 0.30
. 8B ENERGY (ev)

FIG. 4. The transmission coefficient for electron tunneling through a trian-
gular barrier with a height AE, = 0.254 eV. The solid curve is using the
numerical approach with Airy functions and their derivatives. The dashed
curve is from the WKB method.

T(E) = T(E,) -4_7/’/3
4JE.(V,—E) [_ 2 .
,.——_-.-o % (18a) : where the effective mass difference between the well and the
= N(E; - Vo)/E, eewv.i=v.e .o ..  barrier regions has been ignored. If one includes the effective .
(t+ ,@, - W)/E, )? T /f * mass difference, the tunneling coefficient will be a function
A : of both the longitudinal and the transverse energies,'*'* E,
if 7o ~1, (18b)
where . and E,. The effect is small, however, since the effective mass
. difference is small. A more accurate result for the tunneling
Mo = (Ke/eF) (Vo — E,) (19) | coefficient without any asymptotic expansion can be ob-
K. = (2m*eF /#%)'3, (20) | .tained by use of Airy functions'?:
!
4K
T(E,) =— l (21)
wk, [Bi(ng) — (Kr/k AT (19)]% + [Ai(70) + (K-/k)Bi(70)]*
r
where we have
= (2m*E,/#)\/? (22) S(2k,, k;) =S(Zk,, 2k,,)
where 77, is defined in (19), Ai(7,) and Bi(7,) are the Airy = m* ) dk ;,
functions, and Ai'(7,) and Bi’(7),) are their derivatives with 8r# i,
respect to the arguments. A numerical comparison of the T(E;,)T(E},)
two results using (18) and (21) is shown in Fig. 4 for a (23)

barrier height ¥, = AE_ = 0.254 eV. It is clear that the re-
sults using the WK B method are good only if the condition
[nel > 1 is valid. For energies E, near the barrier height,
which are important for our calculation of the tunneling-
assisted impact ionization, the WKB method is not accurate
since the prefactor in (18) goes to zero, while the more pre-
cise result shows a smooth transition. If one sets the prefac-
tor equal to one as done by other researchers,'*!* the dashed
curve will shiftto 1 at E = ¥, and will deviate more from the
solid curve, which is obtained from the exact numerical ap-
proach, than the dashed line. Thus, we conclude that (21)
should be used to incorporate the effect of the tunneling-
assisted impact ionization.

Since the tunneling coefficient is a function of £, only,

% [(kl: _k;x)(klz _kh) +q2]2 ’
where T(E;,) and T(E ;) are obtained from (21) and the
range of integration is from k,, to k,,, i.e., over the whole
spherical surface in Fig. 2, instead of from kj, to
k,, + k,, — k}, since the tunneling effect is taken into ac-
count in T(E},) and T(E;,). The previous calculations
without tunneling correspond to

1 if E],5>AE,
“lo if E|,<AE,’ )
and a similar expression holds for T(E ;. ). Thus, the results
of impact ionization without tunneling will have threshold

energies decided by (15), which are higher than that of the
tunneling-assisted impact ionization since the transmission

T(ED) (24)




coefficient differs significantly from zero even if E;, and
E ;. <AE,.

Il NUMERICAL RESULTS

Various effects of multiple subbands, the quantum-well
width L_, the band-edge discontinuity AE_, and the doping
concentration have been discussed in Ref. 8. We have used
the 60—40% rule for the conduction- and valance-band-edge
discontinuities. ' The validity of our new analytical approxi-
mation in Eq. (12) has been presented in Fig. 3(a) and com-
pared with the direct numerical integrations shown in Fig.
3(b) using Eq. (4). The results of the analytical formula in
Fig. 3(a) do not show the fluctuations of the muitiple nu-
merical integrations in Fig. 3(b).

In Fig. 5, we show the ionization rate as a function of the
incident electron energy E, measured from the conduction-

band edge of the barrier region at the heterointerface with
- and without tunneling. The doping concentration N, is |

1X10'” cm ™ and only one subband is filled in this case. It

- can be seen that the threshold energy for impact ionization is
' reduced significantly when tunneling is included. The ioni-

j
{
|
i
{

zation rate is also enhanced especially at the low-energy end.
When the energy of the incident electron is very high, the
tunnelings of the final electrons 1’ and 2’ are not important
which is expected, since they all have enough energy to get
out of wells without tunneling assistance. In Fig. 6, we calcu-
late the ionization coefficient a for a doping concentration

“Np = 7x10" cm~? and assume the saturation velocity of

the electrons v, = 1 10’ cm/s. The ionization coefficient is

: obtained using @ = (1/7)/v,. The electron temperature T,

versus the electric field Fis obtained from the average energy

. by a Monte Carlo simulation and is roughly, e.g., T, = 4630

Kat F=100kV/cm; T, = 3860 K at F = 50 kV/cm; and
T, =2300 K at F= 10 kV/cm. The multiplication factor
M, for electrons as a function of the applied voltage V fora

. multiple-quantum-well structure of 50 periods is shown in

Fig. 7. We assume a well size L, = 200 A, and a period

; JONIZATION
i RATE (I/sec)

IO“ -

IO'Or

Tunneiing Assisted
2 9,% 2x% Px% £ x& £ x &
XX

)
o9k 0 ° xx*
X
0 x W
° Without Tunneting
o X
H
108 | o X 1 o
o E”Ss 10 1.5

ENERGY OF INCIDENT ELECTRONS (ev)

FIG. 5. The impact ionization rates | 1/7(E,) ] as functions of the incident
electron energy with tunneling-assisted process (circles) and without tun-
neling (crosses) are compared.
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FiG. 6. The eiectron ionization coefiicients a with and without tunneiing

| assistance vs the reciprocal of the electric field are shown.

L =600 A. At this high-doping concentration, there are
four occupied subbands. The average effective mass m}
= 0.091 m, for the GaAs region is used to take care of the

Al,Ga, _ ,As region assuming the Al mole fraction
x =0.25. The conduction-band-edgs discontinuity is AE,
=0.187 eV.

All the calculations are done assuming T = 77 K since
the confinement of the carriers by the quantum wells will be
better at low temperature. This dynamic storage of carriers’
in the quantum wells is very crucial in the design of this
i device. According to Egs. (4) and (12), the impact ioniza-
\ tion can also be written as

b1 N, amet (1.,,)2

|
|
| effectof the nonparabolicity.® We have m* = 0.083 m,in the
!

T(Eo) n 2 ﬁfz L

MU TIPLICATION
FACTOR

<o

(25)

Mn

i ! [ A
20 30
APOLIED VOLTAGE (V)

1
05 0

FIG. 7. The multiplication factor for electrons vs the applied voltage in a
: multiquantum-well structure with 50 periods is illustrated above.



i.e., the impact ionization rate due to electrons in each sub-
band of the quantum well is proportional to the electron
concentration in that subband. This is true provided that
S(k,k,) =S(k,.2k,, ), i.e,, the transverse component k,, is
negligible in the S integrals. To increase the ionization rate,
one either increases AE, or increases L, to have more elec-
trons N, stored in the wells. However, larger AE, will in-
crease the threshold energy, and larger L, will decrease the
energy of the confined electrons. Both tend to decrease the
impact ionization rate. Thus, one needs to choose optimum
parameters for AE,, L_, and doping concentration N, for
best performance of the device. The multiplication factor for
electrons is calculated from

M, = (1 +al)", (26)

where the 1 accounts for the primary electrons, aL accounts
for the secondary electrons and /V is the number of periods. If
the total length of the avalanche region is I, we have
W = NL, and in the limit ¥ - «

M, —_-Allim N+a(W/N) )V =e", (27)
which is the same as that of an ideal avalanche photodiode'®
with an avalanche region W. However, since L is finite, we
use (26) instead of (27). The multiplication factor increases
steadily or almost exponentially for this superlattice photo-
multiplier instead of increasing sharply at a certain reverse-
biased voltage which would be the case for a two-carrier-
type avalanche photodiode.'®

' IV. CONCLUSIONS

Tunneling-assisted impact ionization across the con-
duction-band-edge discontinuity has been investigated theo-
retically. An excellent analytical approximation has been

found for electron-electron interactions between the inci-
dent free electrons and the bound two-dimensional electrons
in the quantum wells. It is shown that the tunneling-assisted
process lowers the threshold energy and enhances the ioniza-
tion rate. The tunneling may increase the ionization coeffi-
cient by a factor of 2 or 3 depending on the electric field

" strength and the size of the quantum wells.
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We present variational calculations of subband eigenstates in an infinite quantum well with an
applied electric field using Gram-Schmidt orthogonalized trial wave functions. The results
agree very well with the exact numerical solutions even up to 1200 kV/cm. We also show that
for increasing electric fields the energy of the ground state decreases, while that of higher
subband states increases slightly up to 1000 kV/cm and then decreases for a well size of 100 A.

Electronic as well as optical properties of quantum wells
subject to external electric fields have received much atten-
tion.'~” These areas are interesting both from a fundamental
and a practicai point of view. The possible device applica-
tions include the use of quantum confined Stark effect? in
optical modulators® and optical switching devices.® As yet,
most of the theoretical works has been confined to the calcu-
lations of the ground state. Very recently, Matsuura and Ka-
mizato’ reported an exact numerical calculation of subbands
in an infinite well and concluded that the higher subbands
behave very differently from that for the ground state when
the electric field strength is increased. Exact solutions em-
ploying two independent Airy functions®® are sometimes
too complicated to use in real problems. The variational ap-
proach has the advantage of providing analytical expres-
sions for the eigenstate energies and the wave functions, and
numerical results with reasonable accuracy can be obtained.
Analytic form of the trial wave function for the ground states
has been known,'-* but no useful forms of the trial solutions
for the higher subbands which yield accurate results com-
pared with the exact ones are given yet. Recently, a trial
wave function of the form [, (z)exp( — B.z) for the nth
subband has been suggested,” where /', (2) is the zero-field
nth quantum well bound state wave function and 5, is a
variational parameter. However, it is pointed out that the
solutions may yield very different results from the exact ones
(for n> 1) because these trial functions are not orthogonal
to each other.” That observation is also confirmed in this
paper and the numerical results are illustrated. Thus, it is
important to find an orthogonalized set of trial wave func-
tions for the variational calculations of subband energies and
wave functions.

We report in this letter variational calculations on sub-
band states in an external uniform electric field based on the
infinite well model. We find anarytic forms of orthogona-
lized trial wave functions by the Green-Schmidt orthogona-
lization procedure. Our calculations agree very well with
exact numerical results up to 1200 kV/cm with an error less
than 9% for L = 100 A. For comparison, we also show the
numerical results for which the trial wave functions are not
orthogonalized.

Itis well known that the variational method can also be
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used to obtain one of the higher energy levels if the function
is orthogonal to the eigenfunctions of all the lower states.'®

The most common method of obtaining an orthogonal set of
functions is the Gram-Schmidt orthogonalization proce-
dure,'" which is the construction of an orthonormal set
{¢,$s...} from a finite or an infinite independent set
{u,,us,...} which is not necessarily orthonormal.

Let us consider an electron with charge — |e| and effec-
tive mass m®, in an infinite quantum well width L in the
presence of a constant electric field F along the positive di-
rection of the well z. We choose the origin to be at the center
of the well. The Hamiltonian of the system in the effective

mass approximation is given by'~

H=H,+ |e|Fz, H
where H, is the unperturbed Hamiltonian whose eigenvalues
are given by

EQ® = (#7?/2m*L*)n* n=12,. (2)
For our specific problem, we chose the nth vector u,, to be

u,(z) = sin[ﬂ(z + £’-)]
L 2

-3 _l_)] L 3
Xexp[ B,,(L+2 , |Z|<2, 3

which is not an orthogonal set, where 3, is the nth variation-
al parameter. One can easily see that for n = 1, u, is the trial
solution introduced by Bastard er al.'! We also define the
inner product between two functions f and g, ( f1g), by

L /2

(flg)=
— L2

where the superscript ® denotes a complex conjugate.
The procedure we use is as follows:

(i) Letv, =u,.
(ii) Minimize E\(B,) = (¢, H [b,) /(&) , (5b)
and find 5,.

(iii)d, = ¢,/ ()"
n=2, (1) Let v = u, — (u.,0,)9, .
(i) Minimize E-(53,) = (.[H

S (2)g(2)dz, 4)

n=1, (5a)

(5¢)
(6a)

[¥-)/(sit2) . (6b)
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and find B,.

(ii) Minimize E,(8,) = (O H )/ (i), (TD)

(iii) 6=/ (Hol9h)'"*. (6¢)  and find B;.
-1
n=1 (i) Let¢, =u, — z (u/|$:)9: - (7a) (i) ¢, =, /(¢ |¢,)'"7. (7c)
i1 J
This procedure requires mainly three inner products which are in analytical forms:
L l—(=D"""exp[ ~ (B, +B.)] l—(—l)””exp[—(ﬂ.+ﬂm)1)
wltm) =0, +P,)|- FJE) - 5 ’ (8)
(e |} 2(ﬁ g )( (n—m)y'r + B, +B,)° (n+m)m+ (B, +B.)°
1 [[ ( ) ﬁ,’..) ]1—(—l)"“'"e>tp[-(ﬁ,.+ﬁm)]
H, —— ) - — —
(u,|Hylun) zLEl |l B, +B.m = +mfB,, (n—m) n—myrt B + 8.
k] Bfn) ]1—("1)n+mexp[—(ﬁn+ﬂm))}
- Ll , &)
[(B"+B")(m =) "Mt (n+my7 + (B, +B,)’
and
2 2
(ap | €1z |1} = -lel FL o [( huile - Lol )
2 (n+my’m + (B, +Bn) 2 (n+m)r+ B, +Bn)°
X{1—=(=1"""exp[ — (B, +B.)]} + (B, +B.)(— 1" "exp[ — (B, +I3,..)]]
—_ilelpLz 3 9 1 ‘?[( B" +Bm - 2(7B"w+B’")- 7)
2 (n—=m)y’m + (B, +B.)° 2 (n—m)'m + (B, +B.)°
x{1—(=1"""exp[ — (B, +B.)]} + (B, +B.)( = 1)"""exp[ — (B, +/9,.,)]] : (10)
The minimization of an analytical function and finding  and
F™™ can be directly done in the computer by calling some
subroutines, e.g., using International Mathematical Statisti- __1 ( 3 )” 3(e2F 27"13)” 3
cal Libraries (IMSL) subroutines. AL, 2 lelFL + 2 m* ’ (16)

For the expectation value of the ground-state energy
E,(B,), we have

EI(BI) = (¢||H|¢l)

= E(lm[(l + B—E—)
T

+f(_1_+__’9'__,_-‘_comﬁ,)], (1)

28, B% + T 2
where the parameter F is defined by
F=|elFL/E®, (12)
which turns out to be the normalized electric field.”
In the low field limit, F< 1,
| (7
"““::—F(-——l) 13
1 3 6 (13)
and
171 2N\ mre*FiL
sE=E B - L1 2y merL
1 (B 1 g\ 3 - 7
(14

In the high field limit, F> 1

llmn=(%ﬂ,2;;")l/3 (15)
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Equations (11)-(16) have already been obtained by
Bastard et al.' except they missed the factor of 1/2 in front of
Bin Eq. (7) and the expressions for 8 " of Ref. 1 in the low
and high field limits are not correct. This does not affect their
final results for AE,, which are correct. Calculations of high-
er energy levels are straightforward following the proce-
dures in Egs. (5)-(7). The results of the normalized energy
E, = E,/E " for the first three states are plotted versus the
normalized electric field F in Fig. 1. The plot in terms of
these two normalized parameters is universal which can be
seen from the original Schrodinger wave equation.” It is
readily seen that the shift of the subband energy due to the
electric field s different between the » = 1 state and the
higher energy states. For increasing electric fields, the
ground state shows a large negative shift, while higher states
have small positive shifts for fields up to F=20 and then
negative shifts. We have also plotted the subband energies
obtained from the exact numerical solution. We find tha:
both methods of calculation give very close results. even up
to F = 25. The parameters we use are m* = 0.065m,, and
L = 100 A where m, denotes the free-clectron mass. F = 10
corresponds to 578.5 kV/cm for this L. The results of calcu-
lations employing unorthogonalized trial functions® defined
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FIG. 1. Normalized subband energies (E, = E,/E () are plotted vs the

SN, TS |

normalized electric field (F = |elFL /E ™) (1) The exact solution — (sol-
id lines), (2) the variational method with Gram-Schmidt orthogonaliza-
tion procedure --—- (dashed lines), (3) the variational method (see Ref. 5)
without orthogonalization - - « - - (dotted lines).

in Eq. (3) are plotted in Fig. 1 (dotted lines). One readily
notices that these solutions begin deviating significantly
from the exact ones at around F = 1.5 (F = 86.8 kV/cm for
L =100 A). In Fig. 2 we plot the square of the wave func-
tions |¢|? for the first three states when the electric field is
F=120. |¢|? is normalized to L. We see in Fig. 2 that the
ground-state wave function is shifted 10 z <0 region signifi-
cantly, while higher subband wave functions still have a
large amplitude in the z > O region even at F=20.

In conclusion, we have derived orthogonalized trial
wave functions which yield very close results to those of the
exact numerical solutions. It is shown that for decreasing
electric fields the energy of the lowest subband decreases,
while that of the higher subbands increases slightly up to
F =20 (F21000kV/cm for L = 100 &).
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FIG. 2. Magnitudes of the wave functions, L |¢, (z)|?, are plotted vs the
normaiized disiance z/L for the first three subbands, The dotted lines are
for the zero electric field. The solid lines are the exact solutions and the
dashed lines are those for the variational method with the Gram—-Schmidt
orthogonalization procedure for a quantum well with an applied electric
field (F = 20).
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Exact calculations of quasibound states of an isolated quantum well with uniform electric field:
Quantum-well Stark resonance
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We present universal plots from exact numerical calculations for the energy level and the reso-
nance width of quasibound states in a quantum well with an applied electric field (quantum-well
Stark resonance) by solving the Schrodinger equation directly. This calculation gives both the
resonance positions and widths for the complex eigeavalue E¢—iI'/2 of the system. Our theory
also shows that the energy shifts of the ground states for the clectrons and holes have the same
behaviors in high fields without any turnaround phenomenon, eontrary to the results of Austin and

Jaros.

Electronic and optical properties of quantum wells with
applied external electric fields ere of increasing interest,
Studies of these areas are unporumt both from a funda-
mental and a practical point of view. Optical modulators'
and optical switching devices? based on the quantum con-
fined Stark effect have been suggested. Possible device ap-
plications of the field-induced tunneling in quantum-well
and quantum-barrier heterostructures include high-speed
resonant tunneling devices.>¢

More recent theoretical studies’=? of the effects of exter-
nal electric fields on the quantum-well systems have
predicted both the field-induced level shifts and the field
dependence of the carrier lifetime. In this paper, we report
exact numerical calculations on quasibound states of a
quantum well in an external electric field (quantum-well
Stark resonance) by solving the Schridinger equmon for
Stark resonance directly. It is found that the previous re-
sults based on phase-shift analysis’™® and the stabilization
method® agree very well with our results over a wide range

viz)

-L/2

[*] W] 3

FIG. 1. Potential-cnergy profile ¥(z) for & single quantum
\;ell with depth Vo and width L subject to an external electric
ield F.

k-]

of the electric field. At an extremely high electric field,
there it no turnaround behavior in the energy shift for bath
the electrons and the holes, contrary to the results in Ref.
7, where no explanation can be provided for that
phenomenon. We believe that our direct numerical ap-
proach is very reliable even at a very high electric field,
while the results using the phase-shift analysis may have
drawbacks in the high-field limit. Our approach has an
advantage over the previous resuits’~? in that both the
Stark resonance position (quasibound-state level) and the
width can be obtained from the single complex energy
eigenvalue of the quantum-well Stark resonance problem.
The disadvantage is that numerical subroutines of the Airy
functions with complex arguments are required.

Conslder an electron with charge — |e| and effective
mass m®, in a finite quantum well of width L and depth ¥,
in the presence of a constant electric field F along the posi-
tive direction of the well z (Fig. 1). We choose the origin
to be at the center of the well. The Schrodinger equmon
of t'l’u system in the effective-mass approximation is given

-—-————-y(x)+|¢|Fzy(z)-Ev(z) lzl=sL/2,
)

_.—-———y(z)+(Vg+|¢|Fz)v(z)"Ev(z)

2m® ds?
z]>L/2.
Since the potential energy term in Eq. (1) tendsto —oo as
z goes to — o=, the sxuem does not, strictly speaking, have
true bound states.™'® In other words, the particle initially
confined in a well can always lower its potential energy by
tunneling out of the well when the ficld is not zero. It may
happen, however, that the tunneling probability is very
smail. In such e case, we can regard the system as having
quasibound states, in which the particles move “inside the
well” for a considerable period of time and leave through
tunneling only when a fairly long time interval ¢ has
elapsed. In discussing the quasibound states, we may use
the following formal method. Instead of considering the
solutions of the Schridinger equation with a boundary
condition requiring the finiteness of the wave function at
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mﬁmty. we shall look for solutions which represent outgo-
ing waves at infinity;'? this implies that the particle finally
leaves the well by tunneling. Since such a boundary condi-
tion is complex, we cannot assert that the eigenvalues (en-
ergy) must be real. By solving the Schridinger equation,
we obtain a set of complex eigenvalues, which we write in
the form

E=Ey,~il/2, ’ )
where T is found to be positive. Eg and I'" correspond to
the quasibound-state energy level and the resonance width,
respectively. The tunneling probability per unit time is de-
fined by

ao=T/h . 3)

The solutions to Eq. (1) with the outgoing-wave condition

are linear combinations of two independent Airy func-
]

Ai(nt) Bil(n) -Ai(p) 0
Ai'(n") Bi'(n) —Ai'(nd) 0
det Ai(n") Bi(g™) 0
Ai'(n”) Bi'(n) 0

where m and nf are the values of n; and n; evaluated at
z=L/2 and —L/2, respectively. If we introduce a new
parameter £© defined by

oo h iz
L

(which happens to be the ground-state energy of an infi-
nite quantum well with width L), and define the normal-
ized energy £ =E/E®, the normalized electric field
Fe=le IFL/E“’, and the normalized well depth Vo

TV JED we may express s and by these three
normalized quantities: E F,and Vo.
2 13 .
nF"“!F EF4F), (8a2)
W .
- nz*--{;’..'-;]- E-VoF+Fy-— - (8b)

TABLE 1. Comparison of the aumerical results for E¢—=iT/2
using the exact numerical method of this paper, the phase-shift
analysis (Refs. 7 and 9), and the stabilization method (Ref. 8).
=

This paper  Phaseshit  Stabilization

F(kV/em) (eV) analysis (eV) method (eV)
75 - Ee 0.025167 0.025167 0.025167

r 186x10"* 1.9x10"¢ 8.6x10°¢

100 Eo 0.0242107  0.0242105 0.024 2106
r 3.64x10"* 3.6x107? 4.1%x10™*

150 Eo 00213716  0.0213816 0.021170
I 641x10™¢ 6.4x10~* 6.5%10"¢

tions!!
a\[Bi(n) +i Ailny)), z < ~L/2,
v(z) =1agAi(n,) +bBi(m), |z|'sL/2, 4)
azAilm), z> -L/2 R

with -

q.--l(f;";), E-lelFs),  (Ga)
and -

m=- % (E-Vo—|elFz) . (5b)

The wave function for z < —L/2 represents an electron
traveling to z = — oo after tunneling. The complex energy
E can be found by solving the secular equation obtained by
matching the value of y and its first derivative at the
points, z = £ L/2. The resulting determinantal equation
is

—[Bi(ns ) +i Ailny )] =0, ©
= [Bi'(ny" ) +1 Ai'(ny7)]

This means that the solution of £ from Eq. (6) is universal
and can be used for both electrons and holes with the re-
placement of the ?arnmeter E® with their corresponding
effective masses.' (Here the effective masses inside and
outside the well are assumed to be equal.) The normalized
energy E can be expressed in terms of only two normalized
parameters, Vg and F. Thus it is clear that both electrons
and holes should have the same behaviors in their energy
shift and the resonance width. To obtain the results of £,

ENERGY (meV) .

ol 1 1 1 )
Q 30 100 150 200

ELECTRIC FIELD (xv/em)

FIG. 2. Comparison of the ground-state energy of the varia-
tional calculation (Refs. 13 and 15) for infinite-well with ap-
propriate effective-well width (dashed line) and the real part of
the energy cigenvalue Ey from exact calculation (solid line) of
this paper.
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and T for holes, one need only multiply E by Eg using the
effective mass of the hole. We have solved Eq. (6) numer-
ically to the desired accuracy using the series and asymp-
totic ex?ansiom of the Airy functions with complex argu-
ments.!! To check the validity of our approach, we com-
pared our resuits with those of the previous methods’® in
Table 1. The values of ¥, L, and m® for the heavy holes
used in the calculatioas are, respectively,

Vo=100meV, L =37 A, m®* =0.45mq , 9)

where my is the free-clectron mass. It is readily seen that
our results agree very well with those of the phase-shift
analysis™ and the stabilization method.®

In Fig. 2, the real part of the energy Eqo (resonance
position-solid line) for the ground-state energy with the
values of Vo, L, and m® for electrons givea by ¥o=340
meV, L =100 A, and m*® =0.0665mq is compared with the
results of infinite-well variational calculations'*'* (dashed
lines), where we have used an effective well width
Lar=126.5 A, chosen to give the same £ at zero field for
the variational calculations. It can be easily noticed that
bothoscalculatiom gave very similar results ¢vea up to
2x]
infinite-well model cannot give the resonance width since
no tunneling exists for the infinite well. The results of the
normalized resonance energy Eq=Eo/E © for various V,
are plotted versus F in Fig. 3. In contrast to the previous
results’ which are still controversial, the resonance position

V/em. However, the variational calculation for the

°
»
»
-
-
8

NORMALIZED FIELD 7siglFL/E'®

FIG. 4. The normalized resonance width I*=I/E® for vari-
ous Vs is plotted vs normalized elecric field £ =l e | FL/E®,

is found to be in the well even at very high field. The
behaviors of the resonant position are the same for both
electrons and holes with proper £ used together with
Fig. 3 as discussed before. Thus the turnaround behavior
for the holes and electrons in the energy shift shown in
Ref. 7 is probably a drawback of that method itself. Using
the same numerical values for holes as those in Ref. 7
L=30 A, ¥o=70 meV, m*=0.45mo, we obtain £
*92.26 meV, ¥V¢=0.76. We do not have any turnaround
behavior even up to F =10, or the electric field F =3075
kV/cm, which covers a much wider range of electric field
than that of Ref. 7. In Fig. 4, we plot the normalized reso-
nance width " =T/E@ for various ¥ vs F. Since the life-
time t is defined by r=A/T, the results plotted in Fig. 4
predict a rapid decrease of the carrier lifetime with in-
creasing applied field by field enhaaced tunneling. ,
In conclusion, we have solved the Schridinger equation
for a2 quantum well with uniform electric field directly.
Complex cigenvalues for quantum-well Stark resonance
are obtained. Our approach has an advantage over previ-
ous analyses’? in that both the resonance position and
width can be obtained from a single complex eigenvalue of
the problem. Tt ) T
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INTRASUBBAND OPTICAL ABSORPTION IN A QUANTUM WELL
WITH APPLIED ELECIRIC FIELD

D. Ahn and S. L. Chuang

Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign
Urbana, IL 61801

Abstract

We present new results for the electric field dependence of the intra-
subband optical absorption within the conduction band of a quantum well.
We show that for increasing electric field the absorption peak correspond-
ing to the transition of states 1 » 2 is shifted higher in energy and the
peak amplitude is increased. These features are different from those of
the exiton absorption. It is also found that the forbidden transition for

states 1 » 3 when F = 0 is possible when F is nonzero.



Quantum confinement of carriers in a semiconductor quantum well leads
to the formation of discrete energy levels and the drastic change of opti-
cal absorption spectra.1 The interband absorptions near the band gap have
been extensively'studied, and it has been shown that their absorption and
luminescence spectra are dominated by excitonic effects.z’ 3 Some more
recent studies have concentrated on the electric field dependence of energy
levels.l‘-7 and band edge optical absorption including the exciton
effect.s_lo Very recently, the experimental studies of the intrasubband
absorption within the conduction band of a GaAs quantum well without the
applied electric field have been reportedll. A very large dipole strength
and a narrow band width were observed. In this paper, we present the
theoretical calculations for the electric field dependence of the optical
absorption between the discrete subbands within the conduction band of a
quantum well based on the infinite potential barrier model. One of the
reasons for Iincreased interest in this area is the possibility of practical
device application. For example, in 1970, Kazarinov and Suris12 proposed a
new type of infrared laser amplifier using the intrasubband transition and
resonant tunneling. Far—infrared photodetector with high wavelength selec—
tivity based on the intrasubband absorption and the sequential resonant

tunneling has also been suggested.l3

The Hamiltonian of the system (for a single quantum well) subject to a
uniform electric field perpendicular to the quantum well (the z-direction)
in the presence of an optical radiation (Fig. 1) is written as

d=H°+Hop, (D




where Ho is the unperturbed Hamiltonian for an electron in the quantum well

in the presence of perpendicular electric field, and the interaction

Hamiltonian H;p is given by14
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where A is the vector potential, ¢ is the polarization vector, and
wave vector for incoming optical radiation, e is the magnitude of the
>
charge of the electron, L is the free space electron mass, and p is the

momentum vector of the electron in the crystal. The first term in (2)

gives the absorption, Hozbs, and the second term gives the emission of

photon.

Then, for a given interaction potential H;p, the transition rate from

the initial state ¥y to the final state 7 for the absorption is given by14

- 2n “abs 2 e
wfi .ﬁ I < ‘l’f I Hop |‘bi > l 5 (Ef Ei ﬁw) (3)

where E, and E_ are the energies of the electron in the initial state and

i f
the final state, respectively and u is the angular frequency of the inci-

dent photon. 1If we neglect the interaction between the electrons in the

well, the wave functions for the initial state by and the final state

be after absorption can be written as1
> >
by = U, (r) £q ()
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where A is the area of the well, L is the width of the well, kt’ kt are the

wave vectors of the electron in the x-y plane for the initial and the final
states, respectively, ;t is the position vector in the x-y plane, and

u. and u,- are the cell periodic functions near the conduction band ex-
tremum. The envelope functions o and o¢ satisfy the following

Schrodinger's equation in the effective mass approximation,s’ 7

2 2
i Se@ el s @ =Es @), |2l <5, (5)
dz

and are given by the linear combination of two independent Airy functions

Ai(n) and Bi(n), where n is defined by

2m* ]1/3

n ==l
(efiF)?

(E - |e| Fz) (6)

In Eqs. (5) and (6), m* and F denote the effective mass of an electron and

the electric field, respectively.

For intrasubband transitions, the matrix element <¢f ]H abs

op | ;> can
16

be approximated by
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where the portion of the cell periodic function has been taken care of
following ref. 16, and we have used the dipole approximation. Since
L/2
* =
I-L/2¢f (z) CH (z) dz §gy » We find that the major contribution to the

>
optical matrix element is the z—component of the r vector. So the absorp-

tion 1is strongly polarization dependent. The absorption coastant g in the

well is defined‘as17

number of transitions per unit volume per unit time

a = Ay incident power per unit area
(3)
.1 Al gy
7111 1 73
if it ié nrm AO
Zuc

where the summations over i and f are for the quantized initial and final
energies respectively for the z—components of the momenta. If we calculate

the total transition rate and take into account the line broadeninglA, we

obtain
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where Efi = E§Z)— Eiz), and E§Z) and E§Z) denote the quantized energy
levels for the initial state and final state, respectively, p is the perme-
ability, c¢ is the speed of light in free space, kB is the Boltzmann
coastant, T is the temperature, § is the angle between the polarization
vector and the normal to the quantum well, n, is the refractive index,

EF is the Ferml energy which depends on the density of electrons in the

well, and I is the line width.

The oscillator strength £ is given by11
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In the zero field limit, f = 14,45 for the 1 » 2 transition, which is inde-

pendent of the width of the well for the infinite potential well model.

!
The experimental resulg of f for L = 65 X (or Le = 101.27 &) is 12,2

f£
and slightly depends on the well width.




We calculated o for the first three states with field dependence
numerically for T = 300 K. 1In Fig. 2, we plot the absorption coefficient ¢
for the incident photon with polarization perpendicular to the well (o = 0)
taking into account the first three states as a function of the energy of
the photon with F = 0 (dashed line) and F = 250 kV/cm (solid line) for an
effective well width 101.27 &, which gives the same ground state energy for

F = 0 with the true well width L = 65 & and the barrier height AEc a 245

1 3

meV, 1 We use EF = 6.49 meV which corresponds to abou$‘2.5 x 1017/cm
electrons and ' = 10 meV from the experimental results’’ and is assumed to
be independent for the variation of F. One can easily see that the tran-
sition 1 » 2 is dominant for both electric fields F = 0 and 250 kV/ecm. For
F = 250 kV/cm the absorption peak is shifted by 16 meV from 165 meV to
181 meV and the peak amplitude is increased from 315 3 c:m_1 to 461 9 cm-l.
There are two distinct features for the case of the intrasubband absorption
compared with the exciton absotption.9

(1) The absorption peak for intrasubband optical absorption is
increased in energy with increasing electric field over a wide range of the
electric field, because for increasing electric fields the energy of the
ground state decreases rapidly, while those of the higher subband states
increase slightly then decrease slowly as cited in Ref. 6. On the other
hand, for the exciton absorption, both the ground states of the electrons
and the holes decreases. Thus the absorption peak is decreased in energy
with increasing electric field.

(1i) The absorption peak for intrasubband optical absorption is

increased in magnitude with increasing electric f£ield because the electrons



8
are shifted to the same side of the well for both the initial and the final
states with increasing electric field, and the energy difference E2 - E1

also increases for the reason mentioned in (i). As a result, the absolute
value of the overlap integral Mfi for 1 » 2 transition increases. While
for the exciton absorption, increasing electric field causes further
separation of electrons and holes in the well and the decrease of the
energy difference between the electron and the hole ground states. Thus,
the decrease of the absolute value of the overlap integral.4
It is also remarkable that the forbidden transition 1 » 3 for F = 0
becomes possible when F is nonzero because the parity which prohibits the
transition 1 » 3 no longer exists when F is nonzero. In Fig. 3 we plot
(Mfilmgg))z as a function of F for the 1 » 2 transitiomn, where Még) is the
value of Mfi for the 1 » 2 transition with F = 0, One can easily see as
expected that the ratio increases slightly from 1 as F increases. In our
calculation, we assume ' is constant, however, to account for the effect
of the electric field on the absorption completely, further analysis of the
electric field dependence of the line broadening is desired.
In conclusion, we have calculated the electric field dependence of the
intrasubband absorption within a conduction band of a quantum well. It is
found that the absorption peak is shifted in energy and 1s also increased

in magnitude with increasing electric field. The forbidden transition

1 5 3 when F = 0 becomes allowable for the nonzero electric field.
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Fig. 1.

Fig. 2.

Fig. 3.
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Figure Captions

Potential energy profile for an infinite quantum well with width L
subject to an external electric field F in the presence of
incoming radiation with angular frequency Ay.

Comparison of the intrasubband absorption coefficient o for infi-
nite well with L = 101.27 é for the first three states with
electron density 2.5 x 1017 /cm3 electrons for the zero electric

field (dashed line) and for the electric field of 250 kV/cm (solid
line).

The normalized overlap integral IMZl/Még)lz, where Még) is for the
zero electric field, is plotted versus electric field F.
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'A Coupled Mode Formulation by Reciprocity and a
| Variational Principle

| SHUN-LIEN CHUANG, MEMBER, IEEE

‘ Abstract—A coupled mode formulation for parallel dielectric wave-
uides is presented vis two methods: a reciprocity theorem and a vari-
tional principle. In the first method, a generalized reciprocity relation
pr two sets of field solutions (EY, HV)y and (E®, H?) satisfying Max-

's equations and the boundary conditions in two different medis
1U(x, y) and €?(x, y), respectively, is derived. Based on the generalized
eciprocity theorem, we then formuiate the coupied mode equations.
{be second method using a variational principle is also presented for
| general waveguide system which can be lossy. The results of the vari-
ti‘onal principle can also be shown to be identical to those from the
] iprocity theorem. The exact relations governing the ‘‘conventional’’
ind the new coupling coefficients are derived. It is shown analytically

t our formulation satisfies the reciprocity theorem and power con-
ervation exactly, while the conventional theory violates the power con-
ervation and reciprocity theorem by as much as 55 percent and the

y-Streifer theory by 0.033 percent, for example.

I. INTRODUCTION

E COUPLED mode theory has been very useful in
| & the fields of integrated optics, semiconductor laser ar-
ays or microstrip coupled transmission lines. A *‘con-
ventional’" coupled mode theory usually makes use of a
serturbation theory to calculate the coupling coefficients
El], [2]. It has been recognized that a simple power con-
servation argument for the powers in individual wave-
iuides leads to the fact that the two coupling coefficients
Kz and Kj, are complex conjugate of each other, which
is generaily not true if the guides are not identical [3]. A
more rigorous approach has been recently proposed and
very good numerical results have also been presented [3]-
[5]. However, there is still considerable ambiguity about
the reciprocity and the power conservation in the coupled
mode theory. One knows that both the reciprocity relation
and the power conservation are the two basic laws which
ﬁmst be obeyed and they are usually used in electromag-
; etics as necessary conditions to check the numerical ac-
curacy [6], {7] of the results. The reciprocity relation is
applied to the fileds and is applicable to a lossy medium.
1Thus, most results derived from the reciprocity relations
do not contain any complex conjugate quantities. If the
medium is lossless, the complex conjugate of the permit-
tivity * equals to ¢ itself, one then applies the conjugate
‘ﬁelds to the reciprocity relation. On the other hand, the
'power conservation deals with the power and, thus, the
complex conjugate quantities are usually used.

Manu}cript received April 11, 1986; revised June 4, 1986. This work
was partially supported by NASA grunt NAG 1-500.
The author is with the Department of Electrical and Computer Engi-

neering, university of Illinois at Urbana-Champaign, Urbana. IL 61801.
IEEE Log Number 8611065. puis

The goal of this paper is to present new coupled mode
equations and analytical relations for the coupling coeffi-
cients which follow the reciprocity theorem in a general
lossy medium, and then the power conservation law if the
medium becomes lossless. This new formulation removes
the slight discrepancies of the power conservation en-
countered in a previous theory presented in {3], [S]. The
analytical relation governing the coupling coefficients X,
and K, is derived from a reciprocity relation for the fields
instead of the power conservation law for the intensity.
Thus, it is also applicable to any lossy (or gain) wave-
guide system.

The general reciprocity relation and the derivation of
the new coupled mode equations are presented in Section
II-A. A variational principle for a general lossy or lossless
medium is presented in Section II-B while a previous
method is limited to a lossless system [8]. We show that
our formulation using the variational principle is identical
to that of the formulation based on the reciprocity rela-
tion. In Section III, we derive the relation between the
coupling coefficients and the propagation constants used
in the coupled-mode equations. Note that this derivation
is independent of the procedure in which one calculates
those coupling coefficients and the propagation constants.
We also show that the coupling coefficients and the prop-
agation constants derived in Section II-A and Section
[-B for the coupled mode equations do satisfy the reci-
procity relation analytically. For a lossless case, the power
conservation relation is derived from the reciprocity re-
lation also. Finally, we present some numerical results
and compare them with those of the previous theories. It
is also demonstrated that an error of $5 percent in the
power conservation using a previous theory [2] can occur
unless the overlap integrals C,, are taken into account
properly. An error of 0.033 percent occurs using the
Hardy-Streifer theory [3]-[5]. It is noted that the Hardy-
Streifer theory, the theory of Haus er al. (8], and the
present one give numerical results almost indistinguisha-
ble on the plots of propagation constants and coupling
coefficients for the examples considered so far, aithough
slight differences exist among the three theories.

II. FORMULATION
A. Coupled Mode Theory from a Generalized
Reciprocity Theorem

In this section, we present a ‘‘generalized’’ reciprocity
theorem for two sets of solutions (E", H'") and (E?,

0733-8724/87/0100-0005801.00 © 1987 IEEE
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H?) to Maxwell’s equations in rwo media ¢! and ¢ re-
spectively. Based on the generalized reci?rocity theorem,
we show by choosing various ¢V and ¢, and their cor-
responding field solutions, two exact relations for the con-
ventional coupling coefficients X, and X, for two wave-
guides a and b can be derived in Cases Al and A2. We
then derive the coupled-mode equations in Cases A3 and
A4. A different approach using the variational principle
for waveguide systems will be presented in Section II-B,
and identical results of the two approaches are also illus-
trated.
1. A Generalized Reciprocity Theorem for Two Media
eV(x, y) and €®(x, y): Consider the first two Maxwell’s
equations in a medium e'(x, y)

V x EY = jwuHY (1a)
Vx HY = —jweVED (1b)

where the fields (E", HV) satisfy all the Maxwell’s equa-
tions and the boundary conditions in the medium € "(x,
y). For a different medium €®(x, y), the fields (E®, H®)
satisfy a similar set of equations and also the boundary
conditions in ¢?. Following similar procedures for the
Lorentz reciprocity theorem, we obtain

v - (E(\) X H(Z) - E(Z) X H(l))
= iw(éa) - (l))E(l) . E(Z)' (2)

If we apply the above relation to an infinitesimal section
Az of a cylindrical geometry which is translational in-
variant in the z direction, we obtain

aizH(E“’ x H® = E? x H") - 2dr dy

= iw ” @, y) - €%, Y)EV - EP dx dy

&)

where the divergence theorem has been used. A similar
equation using the polarization vegtor has been derived
before [1]. However, our interpretation using ¢? and €
instead of the polarization vector is slightly different and
will be shown to be very useful. We note that the above
relations are exact as long as the fields (E'V, H") satisfy
the Maxwell equations and all the boundary conditions in
the medium €"(x, y) and (E®, H®) in the medium 2@(x,
y), respectively. The above reciprocity relation is appli-
cable to any two reciprocal media and is exact, while most
reciprocity relations are applied to only one reciprocal
medium with a polarization vector introduced and ap-
proximated using a perturbation approach. The advantage
of using the above exact relation will be shown in the next
few cases when applied to a coupled-waveguide system.
The time convention exp (—iwt) will be adopted in this
paper.
Case Al: We choose first

P, y) = €9, y) @)

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. LT-5, NO. 1. JANUARY 1987
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(c)

y
Fig. 1. Schematic diagrams for various media under consideration: (a)

€“(x, y) with a single waveguide a. (b) €*'(z, y) with a single waveguide
b. (c) e(x, y) with both waveguides a and b.

where ¢“)(x, y) is a single waveguide a as shown in Fig.
1(2), and we choose the solutions to be a guided mode
propagating in the +2 direction

EWD = E(¢)+(x, y) Pt = (Ega) + ZE?)) e'Bat (5a)
HOY = H(¢)+(x, y) ettt = (HS") + wga)) et (5b)
We then choose
A, y) = ¥z, y) (6)
and
E(Z) = E(b)*(x’ y) e—iﬁu - (Egb) - 2E§b)) e-l'Bu
(7a)
H('Z) = H(b)—(x’ y) e-iﬂbz = (_Hib) + wgb)) e—iﬁgz
(7b)

which are the guided modes propagating in the —z direc-
tion for another waveguide b as shown in Fig. 1(b). Sub-
stituting the above two sets of solutions into the reciproc-
ity relation (3), we obtain

Koo — Kop = HCa + Cod(Bs — B2 (8)




CHUANG: COUPLED-MODE FORMULATION BY RECIPROCITY AND VARIATIONAL PRINCIPLE

x>€I

= % SS AVEP - EP - EPEP) dx dy

&)

SSE(G)XH(P) dedy

(10)

Nl-—-

|
| o =
|
\

A, y) = e(x, ) ~ €90, y), g =a, b
(11)

which are defined almost identically to those used in [3]

except a constant factor of 4. The choice of the back-
gmnnd ely

ysen to be the coupled wavcgude system (Fig. 1(c)) for
' convenience. One notes that K,.’s are the *‘conventional’’
;couplmg coefficients except for the z components in the
'last term of the integrand [2]. Note that Equation (8) is
‘an exact relation as long as the field solutions for each
| waveguide system €9(x, y) and €®)(x, y) are exact. Fora
‘slab waveguide structure, the exact solutions are known
‘and the identity (8) can also be proved analytically since
ya.ll the quantities X,, and C,, can be derived. That proof
| is mathematically labonous but straightforward, and will
i not be shown here. Equation (8) is also a very useful re-
Ltlatiou in checking the numerical accuracies of the *‘‘cou-
'pling coefficients’’ in_the computer program. One sees
|clearly that in general X, # K, when 8, # 8,. Equation
(8) shows the precise relation that the difference between
| the coupling coefficients is equal to the difference between
.the two propagation constants multiplied by the average
'of the overlap integrals C,, and Cj,. In the limit of ex-
‘tremely weak coupling C,, Cpy << 1, we have Kpo =
K,,, which is the recxpmcxty relation under the very weak
' coupling condition in a conventional analysis.

| Case A2: We choose

¥) is not unique (in general). Here, it is cho-

Vx, y) = €9x, y) (12)
E E(l) = E“)*(x, )’) ei&z (l3a)
| HY = H*(x, y) e'™ (13b)
and

P&, y) = P, ) (14)
: E? = EV*(z, y) ' (152)
| H? = H®*(x, y) &', (15b)

| Both fields are propagating in the +z direction. We obtain
! from (3)

| (Kha + K3,) = (Rl + K%)= 4 (Coa = CaX(Bs + B)

l (16)

|
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where
Ky, = ; SS ACYEP - ER dxdy  (17a)
and
.I?z = z Ss AG(Q)E(p)E(Q) dx dy. (17v)
Note from (9):
K, = Kp, — K. (17¢)
(If only TE modes are excited, we have EP = 0, p = g,

b; thus, K‘ = (, Equations (8) and (16) wxll lead to Cyu 8,
= C,,B,, ) In general, relations between K, and K}, or
z, and K3, can also be derived from (8) and (16). In the
followmg cases, we apply the reciprocity relation to the
coupied wavegude medium e(x, y) as shown in Fig. 1(c),
and derive the new coupled mode equations.
Case A3: We choose

€, 3) = €z, ) (18)
and

EM = a@@ E®*(x,y) + b EP*(x,y) (192)

HY = a@@ H® (x, y) + b@) HP" (x, ) (19b)

for the transverse components. The above relations are
just the modal expansions in terms of the two guided
modes in waveguides a and b. We also note that the above
expansion is only an approximate set of solutions to the
Maxwell equations in the coupled-waveguide medium e(x,
y) and the radiation mode has been neglected. Both wave-
guides a and b are assumed to support only a single TE
(or TM) mode. The extension to a muitiple mode wave-
guide is straightforward by including a summation over
all the guided modes in each waveguide. The longitudinal
components of the fields follow from Maxwell’s equa-
tions for the waveguides

@ @
EP = a@) — EP (. y) + b — EP®, ) (200)

HY = a@HO @, y) + bOHY x, y). (20b)

A derivation of the above two components in (20a) and
(20b) is given in Appendix A. A similar relation has been
given for the z-component of the polarization vector in
(1], and used in [3]-[5]. The factors €“/e and €®’/¢ in
(20a) have been ignored in {8]. We think they should be
kept for consistency with the Maxwell equations as shown
in Appendix A.

For the second set of solutions, we choose the medium
for a single waveguide a

P, y) = 94, y) @n
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and the guided mode solutions in the —z direction
E? = E“)'(x, ) Pl

(22a)
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where the matrix elements for C and S are

C =0 =ntCo
H® = HO (x, y) e 75, (22b) . 2
We obtain from (3) where

d_‘ﬁ+£-z+_czd_"<£)=,-(ﬂ + R a@ prg=a,borl,2) @31

dz 2 ) Cpo+ C
SN=KQ+6 (_.P_'_.__Z> (32a)

+i (B. Co ; Coa K,,) b(2) 23) _’ 2

= K,y + C,i8, (32b)

where

w @@ (@) i » @
K,,,sz AeYE" - E; -TE‘ E®) dx dy.

(24)

To keep the same convention as in X, the order p, g for
the definition of X, is reversed from that in [3}, and for
later use. It is sumghtforward to show that K, satisfies
the same relation (8) as K,, by observing that

By =By + 3 SS 232 porw 4 gy (25)

where the second term is symmetncal when we exchange
p and ¢. Thus.

Km - Kw = Ky = (G + Co)B, -

which are exact relations.
Case A4: We choose

8,) (26)

Oz, y) = e(x, y)

and (E(", H) and (E{", H") to be the same as in the

first set of solutions (19)-(20) in Case A3. We use for the
second set of solutions

Dz, y) = ¥x, y)

@7
@ = E®)=(x, y) e~z (28a)
H® = H®(x, y) ™', (28b)
We obtain again from (3)
Co + Cuda(d) _ dbf2)
2 dz dz

C
(5» lj_g! + Ku) a2) + i(By + Ku) b(2).

29

2. Coupled Mode Equations: Based on the results in
Cases A3 and A4, we obtain the coupled mode equations

d [a@) a(z)
H T
dz | b(z) ‘ z) 0

and where C,, and X, are defined in (10) and (24), re-
spectively, and (26) has been used in (32). We note that
Ch =Cpn = C, = Cy, = 1, and the matrix C is sym-

metric. The matrix §,, is obviously symmetric following
32).
Let

- _Ca+ Cpy
¢ 3 .

We invert the matrix C and obtain the coupled mode
equations

d;g = jy,a + iKub (33a)

% = iyb + iKpa (33b)
where
Yo = Bs + [Raa + (Ba = By)T* — RopTl(1 - T
= B, + [Ra = KTVl - & (34a)
Yo = By + (K + (B = BJT — RpuTV(1 - T
=8, + (K — Rptl(1 - Y

(34b)
Ky = [Ros + (B, — By = RV - )
= (R — Ri0)(1 — %) (34c)
Ko = [Ryp + (By — B ~ R — T2
= R — Ru®)(1 - & (34d)

where the first form in each equation is to compare with
that in [3], and the second form is simplified after making
use of (26) or (32b). One should know that although the
matrices C and S are both symmetric, C 'S is not sym-
metric in general. That is, K, # K, unless we have two
identical waveguides. This does not violate the reciproc-
ity theorem or the power conservation law as will be pre-
sented rigorously later.

B. Coupled Mode Theory From a Variational Principle
Applicable to a Lossy Medium

Variational principle has been widely used to study the
resonators, the waveguides or scattering from objects [9],
{10]. A general variational formula for the propagation
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nstant v of the coupled waveguide system e(x, y) can
derived from two oppositely traveling modes of the
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to be (Appendix A):
e(a) e(b)
Ef =at - E®t + af — E®*
€

lystem (42a)
|
' V, X E* - iW#H+ = —i-yz X E+ (353) Hzt = altHgd)t + athgb)t (42b)
., s + where a, a; are, in general, independent of a;” and a5 .
l Ve X H” +iweE” = —int x H (350) The variational formula can be put in a quotient of two
{ V, X E™ — iwpH™ = iyf X E~ (36a) quadratic forms
-+
L V,x H +iweE™ =iyt x H". (36b) Y= Z Qe 94 @)
C,.a;a;
t multiplying (35a) by H ™ and (35b) by E~, and add- g %%
ing the results, we obtain
| -:—in[b"‘-(v,xH*+iueE*)+H‘-(v,xE+-iw“H+)]dxdy
ve 1 - + - +
2 (H- X E" +E~ XH") - $dxdy
N
D 37
t *D @7
\

~vhere N and D denote, respectively, the numerator and
‘he denominator in (37). A similar form to (37) has been
jerived in [8], [10}-[12], except that we keep H™, E™,
’c., in the denominator which will be shown to be nec-
tssary in the following case.

L It is straightforward to show that (37) is a variational
‘ormula for the propagation constant v by taking the first
variation in vy, 8y, from the trial fields

Et = E§ + 6E* (38a)
H* = Hf + 6H* (38b)

vhere E§ and H§ are assumed to be the exact solutions.
Fhat is, using (35) and (36) for EE Hgand v, one finds

)
| S U VPRI /T R Sreen =
} B [azv o ao] 5; BN = 768D] = 0

!
I

| (39)

mhere Ny and D, are the expressions in (37) evaluated
ing E§ and H§. Thus any deviations of first order in
BE* and 5H* only result in errors of second order (3E *)?
and (8H*)” in v.

. We choose the trial functions to be

‘ E'l =alE® + a} E®* (40a)
HY = alH®* +af HP* © (40b)

fL'or the transverse components of the fields propagating in

the +z direction. Here the subscript 1 refers to a, or
waveguide a, and 2 for b for convenience. We also choose

| E7 = a E® + a; E®" @1a)
41b)

HS =g H® +a;H®"

for the transverse components of the fields propagating in
the —z direction. The longitudinal components are found

}
|

where p, ¢ = 1, 2 or a, b in a two-waveguide system.
The matrix elements C,, are defined as (31). The deriva-
tion of the matrix elements Q,,’s is more complicated and
is given by

Qv =i- §S {wAe“"E,(’)- . g9
- BE” -t x HY*

- B,HP™ - ¢ x E®*

AE(Q)

+iH®" - v, x (T Eﬁ”*)] dx dy (44)

where various relations such as those in Appendix A have
been used. Using some vector identity and integration by
parts for the last term in (44):

. - Ae(ﬂ) )+
S iH® 'V,X(i—e—Ez' )dx dy

Ae(‘"
- [[arpp-por . as)
We simplify Q,,

)
G ,i XS [Q,AE«)E;::) C ED — wAe? 52_ E® E‘,"’]_

dxdy+<gﬂ_;_c!)ﬁq

= R,y + CpgB,
= S, (46)

Thus it is clear that Q,, is identical to S,,.
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The propagation constant y of the supermode is deter-
mined from the variational formula (37). We thus take the
partial derivative with respect to g, regarding the ampli-
tudes of the positive traveling waves a, to be independent
of a;

DG 24) @7
da,
and obtain -
¥y L Cpa; = Z Qpa} (48)
q q

where we have made use of (43) again.
Noting that

&~
for the system mode, we obtain the coupled-mode equa-

tion
d|a a,
c4[2]-[2]
dZ a Q ay
which is identical to the coupled-mode equation (30) de-
rived in Section II-A since @ = §. If one takes partial

derivative with respect to a; in (47), one obtains identical
results as (49) since both C and @ are symmetric.

49)

III. RECIPROCITY AND POWER CONSERVATION

Almost all the previous theories use the power conser-
vation to find the relation between the two coupling coef-
ficients K, and K,,,. That would lead to erroneous results
since K, # Kj,, in general, if two waveguides are not
identical. An approximate theory from a more rigorous
approach indicates some clue to the reciprocity relation
by a power conservation argument but the results still
contain some small discrepancies [3]. The explanation
given in [3] was that they are due to the neglect of the
radiation modes. In this section, we show that reciprocal
relations can indeed be satisfied analytically and the pre-
cise analytical relation of K, to K, can be obtained, and
the radiation field can be ignored from the beginning. The
relation derived here should be obeyed and our coupled
mode theory does satisfy this analytical relation.

A. Reciprocity Relations

Let us apply the reciprocity relation (2) to the two
waveguide system described by e(x, y) (Fig. 2). We

choose €)(x, y) = €®(x, y) = e(x, y), and the two sets
of solutions

EP = a%) E®*(x, y) + bV EP*(x,y)  (50a)

HY = a%) H (z, y) + b0 H?*(x, ) (50b)
and

E? = aP@) E9(x, y) + bP() E®(x,y) (5la)

H? = ad%Q) B (x, y) + bP@) HY (x,5) (S51b)

al2)

; x;O :

Fig. 2. Two panallel dielectric waveguides applied to the reciprocity re-
lation. The surfaces S, and §; are nommal to the 2-direction. The side
surface 5, expands to infinity. The two sets of solutiosn used are: 1)
a'(=1) = 0, BV¥(=1) = ¥V, a'"(0) = oigtmion (55a), b'V(0) = equation

b

(55b). 2) a®(—1) = equation (60a), b¥(~{) = equation (60b), a**(0)
= Uy, b¥(0) = 0.

for the transverse components where the radiation mode
has been neglected.

The volume of integration is chosen to be bound by S,
$,, and S, as shown in Fig. 2. Using the divergence theo-
rem and the fact that the surface integral on the side S,
goes to zero because of the radiation condition, we obtain

H ED x HP - ED x H™ - 2 dx dy
= |
S

= SS (EP x H? — EP? x HY) - tdxdy (52)
=0
$

which leads to

a™(0) a®(0) + 5‘”—’2“-5& [@®©) 530 + a®(©0) b )]

+ 50) 5¥(0)

g%cﬁ [@V(=1) b9~

= g(=]) a®(~1) +
+ a®@(=1 bO(=D) + bV(=1) bP(-1).

(33)

We next consider these two sets of solutions to be the
coupled mode equations with two boundary conditions

satisfied respectively. One starts at z = -/ with the
boundary conditions
(=) = ¥, (54b)

|
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-and the solutions of the mode amplitudes when propagat-
ing to z = 0 are

aV(0) = V,i I—i"—’! sin Yl (55a)
bY(0) = Vo[cos i+ i% sin w] &Y (55b)
:.j;ewhere
A= 3”—%—'1- (56)
% ¥ = VAT ¥ Kyl 57
- 7> + Ya
¢ == (58)

The next set of solutions are the propagating modes in
“he —z direction with the boundary conditions

%) a®(©0) = Uy (592)

b®©0) = 0 (59b)
ind the solutions when the mode propagates to z = -/
ire

a?(=1) = Uo[cos vl - i%sin \ﬁl] e (60a)

(=1 = U, i%ﬁ sin yle®!. (60b)

ubstituting these field amplitudes (54), (55), (59), and
60) into the reciprocal relation (53), we obtain immedi-
itely the relation

vhich is the reciprocal relation that must be obeyed. Note
hat the above relation is exact and there is no complex
onjugate operation involved here. It is applicable to lossy
is well as lossless systems. Each quantity in (61) can be
omplex in general. Using our theory as derived in Sec-
fon II, the quantities given by (34a)-(34d) do indeed sat-
ny the above reciprocal relation (61) analytically! The
roof is straightforward by substitutions and making use
if (26) for K, and K,,. Interestingly, the above relation
61) is of the same form as (26) except that the propaga-
ion constants are the modified v, and v, instead of 8, and
) for individual waveguides.

I. Power Conservations
We choose the first set of solutions to be
EPx, y) = a() E@*(x, y) + b(z) E®*(x, ) (62a)

H i, y) = a2) HO*(x, y) + b(z) H®*(x, y) (62b)

or €9z, y) = e(x, ).
For the second set of solutions, we choose ¢?(x, y) =
*(x, y). Since the medium is lossless, ¢* = ¢, the com-
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Fig. 3. (a) (D) (c) An illustrative example to show the two coupled wave-
guides under consideration. There also exists an external perturbation
between the two waveguides.

plex conjugate fields are also solutions. We choose
EP(x,y) = a*@) EP*(x, ) + %) EP* (5, y)
(63a)

se(d), N e i Py 27 L YOI by = o .
Hx,y) = a5 g H" &, y) + X0 H" (x, y)

(63b)

making use of the z-inversion symmetry also. Substituting
(62) and (63) into (52), we obtain.

Pz=~1)=Pz=0) (64a)
where
P@) = la@)|* + |b@)}?
+ (Cap + Cuo) Re (a(2) b%z))  (64b)

turns out to be the power guided by the two waveguides,
where we have used relations such as

c,,.—_;HE?’ X H® - § dx dy

=iSSE$"’><H$""-zdxdy (65)

for a lossless system assuming one chooses E, and H, to
be real, which is possible [13]. We note that since the
distance  between the two surfaces S, and S, is arbitrary,
(64a) leads to the fact that P(z) should be constant inde-
pendent of z, which is also obvious from the power con-
servation point of view. Using the boundary conditions

[ ]
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Fig. 4. The propagation constants for the coupled waveguides in Fig. 3:
(a) the resl parts, and (b) the imaginary pans of the propagation constants
(1/pm) are plotted versus the thickness (um) of waveguide b. The exact
solution (solid line), our resuits (dashed line), and the results using [3]
(dotted line) are almost on top of each other. The crosses are resuits

using 12].
that a(0) = 0 and 5(0) = V,, we find [3] Thus the *‘power conservation violation factor’’ for ex-
K, citation in waveguide batz = 0
P(2) = |Vyl? {1 + 7 (Ko — Kio)
+ A(Cp + Gl sin \Ilz} = constant. (66) F,., = % [(Kep — Kia) + A(Cop + Cp)]  (67)
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Fig. 5. (a) The real pans, and (b) the imaginary parts of the coupling coef-
ficients X, and X, for the waveguide system in Fig. 3 are plotted versus
the thickness (um) of waveguide b. Our resuits (dashed lines) and the
results using [3] (dotted lines) are on top of cach other. The crosses are

the resuits using (2].

should be zero. One sees clearly that this condition has
been derived in the previous section using the reciprocity
theorem which is more general for lossy as well as loss-
less cases. In deriving (67), one needs to restrict every
quantity in (67) to be real for a lossless medium. Our new
formulation presented in the previous sections does sat-
isfy exactly these reciprocity conditions and power con-
servagqn, since the factor F is zero if we substitute all
quantities in (34a)-(34d) into (67) and use (26). The fac-

tor F is an indication of the power conservation and the
reciprocity relation. It can be used for the final numerical
check of the consistency of the theory. Similarly, for an
initial excitation in waveguide g at z = 0, one can define
another factor

K
Fiup = ;’%‘ [(Kps — Kap) = A(Cap + Cp)]  (68)
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three methods; our resuits (dashed line), the results using (3] (dotted
lines) are shown using the left scale. The results using [2] (crosses) are
shown using the right scale.

.20

to check the numerical accuracy. The numerical results of
these two factors in (67) and (68) using various methods
will be presented in the next section.

IV. NuMmerical RESULTS AND DIscussiONs

In this section, we consider an example from [3]. The
coupled mode equations (33a) and (33b) with the expres-
sions in (34a)-(34d) are used in the numerical calcula-
tions in this paper. The refractive index profile is shown
in Fig. 3 where an external perturbation between the two
planar waveguides also exists. We choose the index vari-
ation to be along the x direction, and for TE polarized
waves, the electric field has only the y-component. The
refractive indices are n; = ng = Re (n3) = 3.4, n; = n,
= 3.6 and an additional loss exists between two guides
such that i} — n? = il. 299 x 1073. The other parameters
aret, = 0.15 um, t; = 0.4 ym, A = 0.8 um, and ¢, varies
from 0.1 pm to 0.2 um. The numerical results using an
exact root-searching approach have also been shown as
the solid lines in Fig. 4(a) and 4(b) for the real and imag-
inary parts of the propagation constants. (In [3], the *‘ex-
act”” numerical method combines a root searching ap-
proach assuming a lossless system to find the real parts of
the propagation constants, and a perturbational approach
for the imaginary parts when the loss is added. The final
*‘exact’’ results in [3] are indeed very good compared with
our exact root searching approach.) The results of the the-
ory in this paper are shown as the dashed lines, and the
results using that in [3] are shown as the dotted lines. We
see clearly that all three methods agree very well with
each other. The results of a conventional method [2] are
also shown as the crosses which deviate more from the
exact solutions especially for the imaginary parts of the
propagation constants.

In Fig. 5(a) and 5(b) we compare both the real and the
imaginary parts of the coupling coefficients using our
method and the methods in [2] and [3]. It is clear that our
resuits do agree very well with those using the method in
[3] with a different approach, which has been checked with
the “‘exact’’ numerical results presented in [3]. We note
that our results satisfy the reciprocity and power conser-
vation analytically and, thus, the factors F,_, and F, ..,
in (67) and (68) are zero while the F’s of the method in
{3] still contain a small discrepancy which is around 0.033
percent at 2 maximum value at 2, = 0.1 um, and the F’s
of the method in [2] yield a maximum power discrepancy
of 55 percent at 7, = 0.1 um (instead of only about 20
percent as claimed in (3]). Detailed calculations of the
two power conservation violation factors are shown in
Fig. 6 (assuming the lossless case, i.e., Im [n} ~ n}) =
Q) where F, ., and F, .., for the method in [3] are shown
(the dotted lines) in the left scale. The results are within
0.033 percent. The results using [2] (crosses) show in the
right scale that F, ., for excitation in waveguide a has an
error of power conservation of 21 percentat ¢, = 0.1 um,
and F), ., for excitation in waveguide b has a value of 55
percent. Our results (the dashed line) for F,.,and F, .,
are always zero or within the round off errors in the com-
puter, and the power conservation is indeed satisfied.

One should also note that the relations using the reci-
procity and power conservation laws are necessary con-
ditions, not sufficient conditions, for the accuracy of the
numerical results [7]. They usually serve as checks, not
direct proofs, of the numerical solutions to the Maxwell
equations.

V. CONCLUSIONS

A new coupled mode formulation has been described
via two methods: a generalized reciprocity relation and a
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variational principle. Both give the same results. Exact
| analytical relations governing the coupling coefficients
| Ky and Ky, (also K, and K,,) and the propagation con-
' stants of individual waveguide 8, and B8, (v, and v,) are
jderived. These relations are used to show that our for-
'mulation does satisfy the reciprocity theorem and the
| power conservation analytically. Numerical results com-
pared with the exact solutions and a previous method [3]
which contains a slight discrepancy show that our new
formulation should be very useful and self-consistent. We
hope this paper will also clarify the reciprocity relation
| for the coupled waveguides.

|

APPENDIX A
DERIVATION OF (20a) AND (20b)

For the guided modes, we have
V. X E@* - iopH®* = -iB,2 x E9* (Al)
V. X HO* + iwe®E“* = -if,2 x HO* (A2)

and a similar set of equations for ¢, E®* H®* and
B8,. For the coupled-waveguide medium, we have

‘ V, X E - iwuH = —iyt X E (A3)
[ V, X H+ iwveE = —iy2 X H. (Ad)

' Breaking the equation into the transverse and longitudinal
| components, we have

\ Ez=—l—V,XH,=

r
\
|

@@V, x H®*

~jwe —iwe

é(a)

’ + b(2)V, x H®™")
y .
az) — E9* + b(2) v E®*

(AS)

1l

€

. which is (20a) in the text. A similar procedure can be
- applied to H, and leads to (20b).
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A Coupled-Mode Theory for Multiwaveguide
Systems Satisfying the Reciprocity Theorem
and Power Conservation

SHUN-LIEN CHUANG

Abstract—Two sets of coupled-mode equations for multiwaveguide
systems are derived using a generalized reciprocity relation; one set
for a lossless system and the other for a general lossy or lossless system.
The second set of equations also reduces to those of the first set in the
lossless case under the condition that the transverse field components
are chosen to be real.

Analytical relations between the coupling coefficients are shown and
applied to the coupling of mode equations. It is shown analytically that
our results satisfy exactly both the reciprocity theorem and power con-
servation. New orthogonal relations between the supermodes are de-
rived in matrix form with the overlap integrals taken into account.

1. INTRODUCTION

HE COUPLING of mode theory in parallel wave-

guide systems has been of great interest in applica-
tions to directional couplers, laser arrays, waveguide
switches, etc. [1], [2]. Although it has long been recog-
nized that the previous coupled-mode theory is only ap-
plicable to very weakly coupled systems [3]-[8], signifi-
cant improvements for strongly coupled waveguides have
only been presented recently in series of papers [5], [8]-
(11j.

The major improvement is probably the inclusion of the
overlap integrals C,, defined in [8], when evaluating the
power, and its resultant corrections to the various param-
eters such as the propagation constants and the coupling
coefficients in the coupled-mode equations. Using two dif-
ferent methods, one based on a generalized reciprocity
theorem and the other based on the variational principle,
a new set of coupled-mode equations has been derived for
a general (lossy or lossless) system [12]. Both methods
give the same results.

In this paper, we apply the generalized reciprocity theo-
rem [12] to a multiwaveguide system. The lossless case
is treated here separately from the general lossy case, since
in a lossless system, one may prefer to deal directly with
powers for which the complex conjugates of the fields are
needed, while for the general lossy case, one may not re-
quire any complex conjugate operations in the formula-
tion [8]-[12]. Thus, the definitions for the overlap inte-

Manuscript received May 12, 1986, revised July 3, 1986. This work
was partially supported by NASA grant NAG 1-500.

The author is with the Depantment of Electrical and Computer Engi-
neering. University of lilinois at Urbana-Champaign, Urbana, IL 61801.

1EEE Log Number 8611417,

grals and the coupling coefficients presented in Section III
will be different from those for the general lossy case pre-
sented in Section IV. As will be shown in this paper, only
when one chooses the rransverse electric and magnetic
field components to be real functions, the two formula-
tions will be identical in the lossless limit. New properties
of our coupled-mode equations are also presented analyt-
ically with the overlap integrals properly included.

0. GENERALIZED RECIPROCITY RELATION

Assuming that the electric and the magnetic fields E*'’,
H'" satisfy the Maxwell equations in a medium ¢‘'’ (x,
y) (for the whole space) and the corresponding boundary
conditions and that E¢?’ and H‘?’ satisfy the Maxwell
equations in another medium ¢!?’(x, y) and the corre-
sponding boundary conditions, it is straightforward to
show that [12], [13]

v (E<l) X H(Z) - E(Z) X H(l))
= iw(e(” - e(l))E(l) . E(Z) (1)

with the same procedure used for deriving the Lorentz
reciprocity relation [14]. When applied to a cylindrical
geometry with an infinitesimal distance in the z-direction,
(1) reduces to

%SS(E(I) X H(Z) —- E(Z) X H(l)) . dedy

= jw 55 (e”’(x, )’) - e(l)(x’ y))E(H . Eu)dxdy.
(2)

Here ¢!’ (x, y) and ¢/’ (x, y) can be general media such
as a single waveguide or a multiple waveguide system as
long as they are translational invariant in the z-direction.
The time convention exp ( —iwt) will be used in this pa-
per. One notes that the two reciprocal relations (1) and
(2) are exact as long as the two sets of field expressions
(EV, H'V) and (E‘?’, H‘??) are exact solutions to
the Maxwell equations in medium ¢!’ (x, y) and ¢ ?’ (x,

y) respectively.
III. CourLED-MODE THEORY FOR A LOSSLESS
MULTIWAVEGUIDE SYSTEM

In this section, we derive the coupled-mode equations
for a lossless multiwaveguide system.

0733-8724/87/0100-0174501.00 © 1987 IEEE
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A. General Properties of the Fields of the Guided
Modes

When the medium e (x, y) is lossless and translational
invariant in the z-direction, one knows that the field so-
lutions of the form exist

a) (E +E,)e®
(H, + H,) e*

which correspond to the fields propagating in the +z di-
rection. Here, we assume the above set of solutions to be
the guided mode of the system. Based on inversion sym-
metry in the —z-direction, the following set of fields will
also be solutions to the Maxwell equations [8], [13}-[15]

b (E - E,)e™®
("Ht + Hz) e~

which correspond to the fields propagating in the —z-di-
rection. If the medium is lossless e*(x, y) = e(x, y), by
taking the complex conjugate of the Maxwell equations
or applying the time-reversal concept, it is easy to show
that the following two sets of solutions also exist:

o) (EFf+EMNe®
(=H} - H}) e™*™
(E! - E}) e*™
(H? - H}) e®™

d

where the * sign means complex conjugate. Since we con-
sider the guided modes of the lossless system (excluding
the leaky modes, cutoff modes, etc.), the propagation
constant §* is real. It is thus clear from a) and d) that one
can choose the transverse field E, to be real, and find im-
mediately that H, is real; E, and H, are purely imaginary.
However, if one uses complex E, (¢.g.. in an optical fiber
with a circular cross section, E,( o, ¢) can be of the form
Jm(k,p) €'"™), one finds that H,, E, and H, will also be
complex. From these general properties of the field so-
lutions, we next derive the coupled-mode equations for a
lossless system and some analytical relations between the
coupling coefficients and the overlap integrals.

B. The Derivation of the Coupled-Mode Equations
CASE [1): Suppose we choose

€V(x, y) = €9(x, y) (3)
EV = (E? + E{©) ¢ (4a)
HY = (H? + H®) ¢ (4b)

t0 be the guided mode propagating in the +z-direction in
a medium ¢'?(x, y) with a single waveguide q. We aiso
choose for the second set

e‘z)(x,y) = E(P).(x, y) = E(P)(x, y)

(5)

175

and
E(2> = (Eip)‘ + Egp)') e-in: (6&)
H(Z) = (_pr)' _ H(zp)‘) e-iﬁpz (Gb)

which are also solutions as discussed before. They cor-
respond to the fields propagating in the —z-direction.
Substituting the two sets of expressions into the general-
ized reciprocity relation (2), we obtain

= = G, +Ch\
K, ~ KX = (8, - B,) <-—’4"—7—‘”i> (7)
where
Ry=3% H ACP(EP” - ) + EPER) dvdy (8)
and
= 1 @ "
CN=5SSE," x H®" . §dx dy. (9)

We note that (7) is an exact relation since the fields (E¢'’,
H'"’) and (E‘?’, H*’) are exact solutions to Max-
well’s equations in €'’ (x, y) and €?’(x, y), respec-
tively.

CASE (2): In this case, we choose '’ (x, y) to be the
medium of the multiwaveguide system €e(x, y)

e (x, y) = e(x, y). (10)
The solutions to the system are given approximately by

N

EV = Zx a,(z) E\9(x,y) (11a)
p.
N

HY = E1 a,(z) HP(x, y) (11b)
P-

for the transverse field components. The z-components are
given by

M : €9(x, y) @)
EZ = i Tx,?)— ap(z) E: (I, y) (IIC)
N
H?Y = Zl a,(2) HP(x, y). (11d)
P-

A similar derivation for the above relations has been given
in [13]) for the polarization vector or in [12]. One notes
that E{¥(x,y), g = 1, * + -, N are not orthogonal func-
tions, and the overlap integrals C,, # 0. The second set
of solutions is chosen as

€V (xy) = (xy) =Pxy)  (12)
E® = (E" + EP") e (13a)
H = (-H?" — HP")e™™  (13b)

Substituting the two sets of expressions (10)-(13) into the
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generalized reciprocity relation (2), we obtain

Zé a,,(z) = 2(1?* +8,8.0) a,(z) (14)

where
Km = E SS Ae“’(EfP) E(q) E""E"’) dx dy
(15)
and
1 = =
e = 5 (G + C3)- (16)

One notes that C,, is a hermitian matrix, &,, = €%, Itis

straightforward to show that I? satisfies t.he same nelanon

(7) as K because
= (D] .

R,=K, + 3 SS AePASPEPED dxdy (17)

where the second term is equal to its complex conjugate

quantity if one exchanges p and ¢ where both A¢'”’ and
A€'? are real (lossless). Thus

By = Ry = Koy — Ky,

(18)

which is an exact relation It is seen clearly that only if
8, = 8,. one has X, o (or if the overlap integrals
are vcry small in the cxtremely weak coupling case,

= IE ). Otherwise one should treat fp,, and K7, as differ-

ent quantmcs in general. One defines the matrix elcmcnts:

Thus, the coupling of mode equations can be written as

— = iQa (20)
where Q is clearly hermitian since
qu = Q;q (21)

which can be shown from (19) and a is a vector with its

elements given by a,(z), 9 = 1,2, , N. Another
way to write the above equation is either
da
C—=iR* +BL)a (22)
dz
or
C‘fz" = i(R + (B)a (23)

where B is a diagonal matrix with the elements given by
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the propagation constants of individual waveguides 8§,.
Here the superscript © means complex conjugate and
transpose of the matrix. The second form (23) is useful
since
@ _iB+E6'R)a (24)
dz
while the first form (22), which is similar (but not iden-
tical) to that of [10], [11], requires more algebraic manip-

ulations in evaluating (¢ ~'BC + &'&*).

C. Power Conservation

In Section III-B, we derived the coupled-mode equa-
tions in matrix form (20), where € is related to the overlap
integrals C,, and C%, and  is defined in (19). Both ¢
and () are proved to be hermitian without any approxi-
mation in the matrix elements. Let us look at the power
guided along the muitiwaveguide system

P(z) =-;-Re SSE x H* - £ dx dy
= Re [E’a;(z) E,,,,a.,(z)]

at(2) (-—C) a,(z) = a*(2) Ca(2)

Y]
: (25)
where € is defined in (16). If the medium is lossless, the

power of the guided mode must be independent of the
position 2z, i.e., dP/dz = 0. We have the lossless con-

dition
da*
E(\ ;‘fZ)) éNaq(Z) + Z{ ay(z )é 4(2) -0,
(26)

Using the coupled-mode equation (20), one finds imme-
diately that the lossless condition is equivalent to

ip'zqa:(épq - é;’)aq =0

where we have used the fact that C,,, is hermitian. Since
a, and a, can be arbitrary values, we obtain

g, - 0L =0

That is, qu must_be hermitian, which is true, since we
have shown that qu is indeed hermitian in (21) from the
definition (19). Thus our formulation satisfies exactly the
power conservation. An example will be shown later
which illustrates this power conservation criterion.

(27)

(28)

D. Power Orthogonality of the Supermodes
Let us choose two sets of solutions to be two distinct
supermodes in the multiwaveguide system e(x, y)

e (x, y) = e(x, ) (29)
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N
E" = (2 ag">E§‘”> e (30a)
qg=1
N . .
H,“) = <q§:‘ azn)qu)> Pl (30b)
where a'’ with elements @}’, ¢ = 1,2, - -+ , N, is the

cigenvector for the first supermode with a propagation
constant ¥,

€P(x,y) = €(x,y) = e*(x, ¥) (31)
N

E® = ( % a;,f"Ef”"> e~ (32a)
p‘

N

H?® = <— 2 a},”‘Hi"") e~ (32b)
P‘

and a'/) with elements ai/’, p = 1,2, - -+ | N, is the

eigenvector for the second supermode with a propagation

constant v,. The reciprocity relation (2) gives

(v = %) ZZ 64"y + T) = 0. (33)

Since v; # v, we obtain the general orthogonality condi-
tion:

a‘“*éa“’ =0, (34)

That is, any two eigenvectors corresponding to different
propagation constants are orthogonal to each other with a
weighting matrix given by ¢.

An alternative way of deriving (34) is simply by look-
ing at the coupled-mode equation (20). The supermode
solution a(z) is given by the form

i #j.

(35)

Thus, the matrix equation (20) for the coupled-mode
equations reduces to the eigenequation

vla = Qa.

The eigenvalue v satisfies

det |0 — yC| = 0. (37)

Since both € and Q are hermitian, the eigenvalues for (36)
must be real, that can be shown from elementary matrix
theory [16]. It is also obviously true from the fact that the
medium is lossless. Another property of the matrix equa-
tion (36) is that two distinct eigenvectors a‘*) and a'/? are
orthogonal to each other with the *‘weighting matrix’* ¢

a*a" = o, (38)

One notes that in the extremely weak coupling case, the
coupling of mode equations have the same form as (20)
except that ¢ should be replaced by /, the identity matrix.
Thus, the orthogonality relation (38) reduces to the well-
known results: @'/'“a""’ = 0 for i # j in conventional
theory.

a(z) = ae™.

(36)

i #j.
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IV. CouprLED-MODE THEORY FOR A GENERAL (Lossy
OR LossLESS) MULTIWAVEGUIDE SYSTEM

In general, a multiwaveguide system can be lossy. The
previous formulation will not be applicable anymore. Ac-
tually, the formulation for a lossy medium is very similar
to the formulation in the previous section, except one does
not have any complex conjugate operation, and special
care is taken for the z-components of the fields as can be
seen from Section ITI-A. A derivation has been presented
in [12] which is similar to that in the previous section.
Therefore, we briefly give the results below.

A. The Derivation of the Coupled Mode Equations for a
Lossy System

CASE (1): Following the procedure in Case (1) of Sec-
tion ITI-B, except that we choose the second set of solu-
tions to be the form b) in Section ITI-A, it is easy to derive
[12]

Coy + Cp

3 (39)

T(Pq"Knv:(Bp_Bq)

K, = -:3 SS A¢EP - E? - EPE®)dxdy (40)

-4

SSEY” x HP - % dxdy

Cpy = (41)

[ SRR

where no complex conjugate operation is involved, and
there is a negative sign in the integrand of (40). The above
definitions (40) and (41) are the same as those used in [8]
except for the constant factor of 4. The difference is only
apparent because once we choose the normalization con-
dition Cy; = Cy; = - -+ Cyy = 1, the factor of 4 is ab-
sorbed in E, and H,. Thus, numerically, K,, is identical
to that in [8].

CASE (2): Following the procedures in Case (2) of
Section III-B, we choose the first medium and the field
solutions to be the same as (10) and (11), and the second
medium and the field solutions to be

€P(x,y) = €P(x,y) (42)
E?® = (E” - EP) e™™ (43a)
H® = (-H? + H?) e (43b)

We obtain again from the generalized reciprocity relation
2)

C,+C, d
%;_"_Z_izaq(z)
C, + C
=‘§<KM+B’17J>“““) (44)
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where
(p)
K, = ; SS Ae“”(Ef”’ - E® - 5;— E§"’E§"’> (45)

and C,, has been defined in (41). One can also show that
K, satisfies the same equation as X, in (39) by recogniz-
ing that

- @ 8¢ p@
KM—K@+2 Ae - EPED dxdy (46)
where the second term is symmetric with respect to p and
g. Thus

Co + Cop

- (47)

Ky — Kgp = (B8, — B,)
which is also an exact relation.
The coupled-mode equation can be written in a matrix
form

"c'g-za(z) - iQa (48)
where
- Cog + C -
= — 5 Z=C, (49)
is symmetric, and
C,o + C,
0, = Ky + 8, 22 @
Pq @ 4 2 (50)
G+ Cp

e t

is also symmetric. The matrix equation can also be writ-
ten as

d-d—za(z) = iMa (51)
M=T"g (52)

or
M=C'BC+ C'Kk” (53)

or
M=B+TCK (54)

where B is again a diagonal matrix with the propagation
constants 3, as the elements, and the superscript T means
transpose of the matrix. Equation (53) is compared with
the form in [10], [11]. One sees that the only difference
is that the matrix C is used here while the matrix C is used
in (8]-[11]. K7 used in this paper is the same as K in [10],
{11] from the definition (40) except for the factor of 4.
The final form (54) is simpler than (53) since B is used
instead of C~'BC. Thus, our coupled-mode equation
looks simpler using the form (51) with M given by (54),
than that in [10], {11]. The coupling coefficients pq de-
fined in (15) for the lossless case or K,, defined in (45)

for the general case differ from X,,, (defined in (8)) or K,,,
(defined in (40)) by the factor '”’ /¢ in the second part of
the integrand. This factor is also taken as one in [17]. We
believe that it should be more self-consistent to keep the
factor since it was derived from (11c) making use of Max-
well’s equation as shown in [12, appendix A].

B. General Orthogonality Property of the Supermodes

Following a similar procedure to that in Section III-D,
one applies the reciprocity relation (2) to any two super-
modes

N
Et(l) - (q?l a(qi)E:q)> ei'h'z (553)
) N . .
H,“) = <q§l a;n),,f#)) PLT (55b).
and
N . .
E? = <p§l a;”Ef”) e~ (56a)
N N
H? = (-p.?l a;,f>H§”> e, (56b)
Using the eigenvector @) = column (a{", a}’, - - -,
a}’) and a similar form for a'’’, one obtains
a7Ca =0, fory, # v (57)

which is tﬁe reciprocity relation that should be satisfied
by any two eigenvectors of the matrix equation

vCa = Qa (58)

which follows (48). Alternatively, because both € and Q
are symmetric matrices, the general orthogonality relation
(57) is a well-known property in matrix theory [16].

C. Reciprocity Relation for Two Sets of Solutions with
Separate Boundary Conditions

Let us look at the boundary value problem for a set of
solutions to the coupled-mode equation (48). The general
solution a(z) is given by

a(z) = A€"A7'a(0) (59)

where
I = diagonal (v, 72, - ** , ) (60)

for a given boundary condition a(0) and the wave prop-
agating in the +2 direction. Here the matrix A is defined
to have the ith column given by the ith eigenvector of the
matrix (58), and v,, - - -, yn are the eigenvalues of (58).
Consider a first set of solutions at z = 0 given the con-
dition @‘ '’ (z = -1),
a‘?(0) = AeT'A~'a‘V (-1). (61)
Let us look at another set of solutions with the boundary
condition given at z = 0 and the wave propagating in the
—z directionto z = —!

a(Z)(_l) =Ae‘r’A"a(2)(0). (62)
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Fig. 1. (a) A single waveguide p described by ¢'”’(x, y) in whole space.
(b) A single waveguide g described by ¢'¥'(x, y) in whole space. (c) A
multiwaveguide system described by ¢(x, y) in whole space.

Applying the reciprocity relation (1) to a cylindrical sur-
face enclosing the planes z = —I/ and z = 0 with a radius
going to infinity, one finds [12]

SS (E(\> % H(2> - E(Z) e H(l)) . dedy

==

- SS (E(l) X H(Z) - E(Z) X H(l)) . idxdy

(63)

From the previous two sets of solutions, we have (Fig. 2)

N
E" = 2 " ()EP (64a)

N
H = L g () HP (64b)
and
N
E? = T a®(:) B (658)
N
H® = - 2 o () HY (65b)

Where the second set of fields propagates in the —z-direc-
tion. The vector a‘'’(z = 0) is related to a‘ '’ (z = —1)
by (61), and a‘?’(z = —~1) is related t0 a*¥’ (z = 0) by
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Fig. 2. A muitiwaveguide system with possible excitation either at wave-
guide p at z = —/ and the wave propagating in the +Z direction, or at
waveguide g at z = 0 and the wave propagating in the —z-direction.

(62). The reciprocity relation (62) reduces to

T -= T =
a‘” (_1) Ca”)(—l) = a'l’ (0) Ca(“(O) (66)
or equivalently
a7 (-1) CAe™A™'a'®(0)
= a7 (~1) (AeTAT") Ca'P(0). (67)

Since the initial conditions for @' '’ ( =) and a‘>’ can be

0

—+ pth position
a(l)(‘__l) =

O O = O

L]

o0 0 o--

a?0) =] . (69)
0
1 — gth position
L0 _
where p and g can pe arbitrarily set between 1 and N, we
find the reciprocity condition:

TAeTA™' = (CAe™a™")’ (70)

where we have used the fact that C7 = C. Since the matrix
A has each column given by the eigenvector of (58), we
have

CAT = QA (71)

or

Ir=A4"'C"'0A = A™'MA. (72)
Substituting the above relation into (70), we find that the
reciprocity condition (70) is the same as

TM = (CM)"  (reciprocity condition)  (73)

- (68)
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i.e., the product CM must be symmetric. We see clearly
that our formulation (48) satisfies this condition because

CM =g (74)

where Q has been proved to be symmetric in Section IV-
A. To illustrate our results, we show in the next section
the special cases for two coupled waveguides and three
coupled waveguides.

V. SpecIAL CASEs

In summary, the coupled-mode equation is put in ma-
trix form

f£a=i (75)

where both C and Q are symmetric. In another form, it is
given by

f—za = iMa (76)
where
M=C"'Q. (17)

The reciprocity condition (74) requires CM (or Q) to be
symmetric. The above formulation is very general and is
applicable to both lossy as well as lossless systems.

A. Two-Coupled Waveguides
If N = 2, one has

M= [;’(ﬁ f:"} (18)

where
=B + (Kiy — CioKn)/(1 = C)  (7%)
Y = B2 + (Kn — CpKy)/(1 = Ch) (%)
Ko = (Kiy ~ KnCp)/(1 = Ch) (79¢)
Ko = (Ky — K1 Cp) /(1 = Ch). (794)

As has been pointed out in [8], the overlap integrals C,,
and C;, or C;, are obtained from the integration over
whole space in the transverse direction, and can be sig-
mﬁcantly large even if K, is small. Thus the factor 1 —
C? 12 may become very small and K, is large The reci-
procity condition that CM be symmetric gives

Ky — Kpg = (v, — ¥s) Cu (80)

which has been shown in [12], and can also be proved by
substituting (79a)-(79d) into (80). The two eigenvalues
Y1, Y2, and eigenvectors are well known:

YW=¢ +y (81a)
=¢ -V (81b)
where )

= VAT + KoK (81d)
A= 7"—;& (81e)

and
ah = [Ali:b¢] (82a)
PRI

where the orthogonality relation a'"’"Ca'® = 0 is indeed
satisfied and it is the same as the reciprocity condition
(80).

B. Three-Coupled Waveguides

IfN = 2 we have

4 Ty We aavl

M=B+C'K (83)

which can be calculated easily by inversion of C, noting
that C is symmetric:

Cp =Gy =(Cpp + Cy)/2 (84a)
Ciy=Cyy = (Ci3 + G31)/2 (84b)
En = _sz = Z'33 = 1. (84c)

The reciprocity condition that CM is symmetric leads to
8., (CM);; = (CM )y,

my; — my = Cpp(my; — myu) + Cymy; — Ciymyy
(85)

which will be useful later. Let us consider a symmetric
case with the two outer waveguides identical [10]:

K=Ky #* Ky = Ky (86a)
K3 = K;, (86b)
Ky = Ky # K. (86¢c)

The matrix elements of M are obtained from (83)
my =my =B + [Kn(1 - Ch) — K5 Cpa(L ~ Cy3)

+ Ki3(C, - E13)]/[’ (87a)

my = By + [Kn(1 + C3) = 2K,Cpp} (1 ~ Cy3)/D
(87b)

my = my = (K — KnCy;) (1 = Cy;3)/D (87c)
my3 = my = [Kp(1l = C) — Ky, Cia(1 — C3)

+ K, (Ch — C)]/D (87d)
my = my = [Kn(1 + Cy3) — (K

+ Ki3)C2] (1 = Ci3)/D (87e)

o
[

(1 = Ci) (1 +Cy3 — 2Ch). (R7f)
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The three eigenvalues and eigenvectors have been calcu-
lated in [10], [11], and are given here:

e (88a)
Y2 = my = My (88b)
Y = ¢_;‘_l’ (88¢c)
where
' o =my +m3 + my (88d)
¥ =V (my + my — my) + 8mpmy, (88¢)
and
1
aV = | (2my ~ ¢ + ¥)/2m; (89a)
1
1
a®=10 (89b)
| -1
and
1
a® = | (2my ~ ¢ - ¥)/2my, (89c)
1

It is straightforward to show that these three eigenvec-
tors satisfy the general orthogonality relation (57) by di-
rect substitutions. Notice that the formulation in [8])-[11]
does not satisfy this condition since in general C; # C;,.

Finally, let us consider an excitation with the boundary
condition at z = 0 given by

0
a(0)=11
0

(50)

The general solution at z is [10], [11]

a(z) = Ae™A™'a(0). (91)

Here, the matrix A is given by the three eigenvectors from
(89a)-(89c). (Note that our definition of A is the inverse
of that in [10] and {11] with some typos corrected.)

A = [a", a?, a?]. (92)
The results of AeT°A™" have been calculated in [10] and
[11]. The solution at position z is

a;(z) = ay(z) = i_z%‘l sin % ei®i/2

a)(z) = [cos%E + i(—miw——ﬂ sin %} e*/?. (93b)

(93a)
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The total guided power is given by
P(z) = Re [a*(z) Ca(z)]
=a*(z)Ca(z) =1+ I-'sinz%E (94)
where the factor F is given by
F = %—22 [m2 (1 + éi3) — my
+ Cp(my — my, - m3)]. (95)

For a lossless system, the power conservation requires that
P(z) be independent of the position z. Thus the factor F
provides a check of the energy conservation. Although it
has been shown before that our formulation satisfies the
energy conservation exactly by using the fact that the two
matrices C and Q are hermitian, one can also see from the
reciprocity relation (85) substituted into (95) that F is in-
deed zero provided that we choose E\?’ and H!”’ to be
real functions for a lossless system. Therefore, Cp;, =
C,, = real. Numerical results will be given in the next
section. The factor F from two previous methods [4], [10]
will also be calculated.

VI. A NumMmeRicaAL EXAMPLE AND Discussions

In this section, we illustrate our theory by a numerical
example [10] and compare it with those of two previous
methods [4], [10]. We consider three coupled waveguides
with the two outside waveguides identical and symmetric
with respect to the center waveguide (Fig. 3). Using the
theoretical results discussed in Section V-B, we calculate
K,q. Cpq and B,. The analytical relation (47) is used to
check the numerical accuracies of these quantities. We
show in Fig. 4(a) the three eigenvalues v,, v2, and v3
from (88a)-(88c), which are the propagation constants of
the three supermodes, versus the separation ¢ between the
waveguides. We compare our results (dotted line) and the
exact solutions (solid lines) of the muitilayered structure
in Fig. 4(a) and those of the method in [10] (dashed lines),
the method in [4] (crosses) in Fig. 4(b). We see clearly
that the results using the method in [10] and our theory
agree very well with the exact calculation. There is a slight
error for the third eigenvalue v near cutoff where the sep-
aration ¢ is reduced to near 0.2 pm. In our calculation, we
choose the same parameters as in [10}, n = 3.4, n, =
3.6, n, = 3.63,d, = d, = 0.15 um, and ¢ varies. The
method of [4] clearly has larger errors in v, and v,, es-
pecially y; deviates from the exact results over a wide
range of 7 near cutoff. The result of v, using three methods
agree with each other very well because

v =my = my =B, + (K — Ki3)/(1 = Ciy)
(96)

using (87) and (88). Since Cy; and (K,, — K)3) are very
small, (C;3; = 0.136 ~ 0.00436 and (K;,, — K;3) =
-0.0237 ~ —0.0004 (1 /gm)ats = 0.2 um ~ 0.6 pum),
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Fig. 3. Three coupled waveguides under investigation. (a) ¢ (x)/ ¢ for the
three-waveguide system. (b) A¢''(x) /€. (¢) Ae'(x) /¢€q.

if we have C;; = 0 (theory of [4]) the difference is neg-
ligible. Since Cj3 = C;; = Ci3, the theory of [10] gives
the same results for v, as the results of this paper.

In Fig. 5, we show the power conservation violation
factor F for the initial excitation at the center waveguide,
a(0) = column (0, 1, 0). We see clearly that our results
indeed satisfy the power conservation very well and F is
always zero. The factor F calculated from [10] is always
very small (less than 0.08 percent), but F calculated from
[4] can be as much as 42 percent.

Numerically speaking, our results are as good as or
slightly better than those obtained from [10]. The new
features are that our formulation is derived using a sim-
pler approach, and it satisfies both the reciprocity theorem
and the power conservation law analytically, while [8]-
[11] can only show numerically that their method satisfies
the power conservation and the reciprocity theorem ap-
proximately. (One should note that power conservation
and reciprocity are only satisfied self-consistently and not
exactly since the modal expansions (11) of the fields are
approximate.) Our formulation also leads to the general
orthogonality relations (38) and (57) with the overlap in-
tegrals properly taken into account, that cannot be ob-
tained from the formulation in [8]-[11]. By setting the
matrix C or C to be the identity matrix, the coupled-mode
equations and the orthogonality relations all reduce to the
results of a conventional analysis [4]. Our numerica) re-
sults also show that ignoring the overlap integrals does
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lead to erroneous results violating the power conservation
significantly as has also been pointed out in [8) and [12].

VII. CONCLUSIONS

Two sets of coupled-mode equations for a multiwave-
guide system have been derived using a generalized re-
ciprocity relation, ome set for a lossless, and the other for
a lossy or lossless system. New general orthogonality re-
lations between the eigenvectors of the supermodes have
been derived. We have derived the conditions on the ma-
trix elements for the reciprocity theorem and the power
conservation laws and have shown that our formulations
do indeed satisfy those conditions analytically.
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APPLICATION OF THE STRONGLY COUPLED-MODE THEORY

TO INTEGRATED OPTICAL DEVICES

S. L. Chuang
University of Illinois at Urbana—Champaign
Department of Electrical and Computer Engineering
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ABSTRACT

A theory for strongly coupled waveguides is discussed and applied to two-
and three-waveguide couplers and optical wavelength filters. This theory makes
use of an exact analytical relation governing the coupling coefficients and the
overlap integrals. It removes almost all of the constraints imposed by a
simpler and approximate coupled-mode theory by Marcatili. It also satisfies the
energy conservation and the reciprocity theorem self-consistently. We show very
good numerical results with the overlap integral as large as 49 percent. The
applications to electrooptical modulators, power dividers, power transfer devi-

ces, and optical filters are all presented with numerical results.



1. TINTRODUCTION

The applications of the coupled-mode theory in integrated optical devices,
such as waveguide couplers [1] - [3], laser arrays [4], [5], and optical filters
[6] - [8], have been well known. However, theoretical improvements for strongly
coupled waveguides have only been attempted very recently [9] - [14]. A simple
and approximate version of coupled-mode equations for parallel dielectric wave-
guides has also been presented by Marcatili [15] to account for the asymmetric
properties of waveguides using a newly found relation between the coupling
coefficients and the overlap integral of two coupled waveguides. A few con-
ditions are assumed in that paper:

(1) A scalar formulation of the fields is considered.

(2) The refractive index perturbation is very small such that second-order

terms can be ignored.

n2 = né[l + Aa(x,y) + Ab(X,Y)]Z

, (1)
= no[l + 2Aa(:<,y) + 2Ab(x,y)]

Thus the new relation between the two coupling coefficients in [15] is only

approximate.

(3) The overlap integral c is assumed to be small (weakly coupling) and 1is
not included in the coupled-mode equations because the coupled-mode
equations in [15] are almost the same as those for the conventional

theory {2] without including the overlap integrals in the four

coupling parameters, Yar Yy Kab and Kba'

In this paper, we apply the theory developed in [9] - [14] and show that

all the above conditions are not required. It i{s shown that an exact analytical



relation governing the coupling coefficients, the overlap integrals and the pro-
pagation constants derived in [13] using a generalized reciprocity theorem can
be combined with the formulation of Marcatili and will give very good numerical
results even for strongly coupled waveguides. It has been pointed out in [9]
that the four parameters Yo Yy Kab and Kba should include the overlap
integrals to obtain correct propagation constants of the supermodes. Since only
By» By of individual waveguides and K p’ Kpa of the conventional coupling coef-
ficients are used in the coupled-mode equations in [15], that theory will not

yield accurate numerical results and may violate energy conservation signifi-

cantly [9], [13] unless the overlap integral ¢ << 1 which is assumed in [15].

In Section 2, we briefly review the strongly coupled-mode equations derived
in [9] - [11], [13] and (14], their orthogonality relation, and an exact rela-
tion between the coupling coefficients Kab and Kba' We also show that this
exact relation can also be derived from power conservation or reciprocity rela-
tion for a lossless medium. In Section 3, we consider the two coupled wave-
guides combining the strong coupling of mode equations and the formulation of
[15] and {illustrate the electrooptic effect. We then study the three waveguide
couplers as power transfer devices and power dividers. Previous studies in [16]
and [17] assume all three guides have the same refractive indices, and a direct
numerical approach for the multilayered structure is taken. In Section 4, the
cross-talk problems for both two and three coupled waveguides are investigated.
Numerical results are presented and compared with those in [18] and [19]. 1In
Section 5, the application of the coupled-mode theory to the optical wavelength

filters 1is studied and the theoretical results are compared with the experimen-

tal results in [8]. Finally, we give conclusions in Section 6.




2. THEORY OF STRONGLY COUPLED WAVEGUIDES

Three very similar formulatious of strongly coupled waveguides have been
presented in [9], [12], [13]. The formulation by Haus et al. [12] is limited
to the lossless system and has a small difference in the z-component of the
electric field for the trial functions in the variatiomal approach. The formu-
lation of Hardy-Streifer [9] does not satisfy energy conservation and the
reciprocity theorem and still contains a small error, while the theory of [13]
(which was derived in a much simpler way) satisfies these laws analytically.
Independently, a reformulation of [9] has been made [20] recently and is iden-
tical to that of [13] after the modifications. The coupled-mode equation in

[13], [14] and its properties are summarized below.

2.1 Strongly Coupled-mode Equation

The coupled—-mode equation in vector form is given [13], [14], [20] by

Eg-z- a(z) = Qa(z) (2)
or

d

I al2) = Ma(z) (3)
where

Q=CB+K 4)

M=E'1Q-B+E'1x (5)

where the vector a(z) has each element ap(z) given by the electric field ampli-
tude for the transverse component of the mode in waveguide p, and the matrix

elements E;q and qu are defined in Appendix A. The matrix B is a diagonal




matrix with the diagonal elements given by Bl’ 32, ey BN of each individual
waveguide in the absence of all other waveguides. It should be noted that (1)

the two matrices C and Q are symmetric [13], [14], [20] and that is very important
to prove the orthogonality property of the supermodes, and (2) the matrix M is

not necessarily symmetric in general.

2.2 Orthogonality of the Supermodes

The supermodes of the multiwaveguide system satisfy the orthogonality

relation [14] for symmetric matrices C and Q in Eq. (2)

a(i)T Eh<j) = 0 for \ % Yj (6)

(1) (a(j)

where a ) is the eigenvector of the supermode with the propagation

constant Y (v,), and the superscript T denotes the transpose of the matrix or

]

vector.

2.3 Reciprocity Condition

To satisfy the reciprocity relation, one finds that [14]
= - T
cM = (CM) s 7

i.e., the matrix Q must be symmetric which is true as derived in [14]}. For two

coupled waveguides,

K
M = a ab . (8)

K
ba Yb

Equations (7) and (8) give

Kb~ Kpa = (¥, = 1p)e (9)

where ¢ = C12 ='———7f———£ (see Appendix A). The above formulation is true in




general for both lossy and lossless systems. If the system is lossless, one may
also have a slightly different formulation as presented in [12], [14] using
field quantities involving complex conjugates.

2.4 Power Conservation

If the multiwaveguide system is lossless, one can choose the transverse
field components Et and Ht to be real functions and find that Ez and Hz are
purely imaginary and Cpq and qu are real [14]. The total power guided by the

multiwaveguide system is

P(z) = —;— Re [f E, x H:-dedy
+ - (10)
= a (z)Ca(z)

where the superscript + denotes the conjugate and transpose of the vector a(z),
and one has chosen qu) and Hip) to be real. Thus using the fact that C and Q
are real matrices, one finds that the condition g%£52-= 0 also leads to Q = QT
or CM = (Eﬁ)T, which is the same as the reciprocity condition in (7). Actually,
condition (7) is very general since it is applicable to both lossy and lossless
cases. A similar formulation (for a lossless medium) leads to the fact that Q
is Hermitian provided one uses complex conjugate quantities with qu and qu
matrices as defined in [l14]. The Hermitian matrix becomes obviously symmetric
when it is real. Another derivation of the lossless condition for two coupled

waveguides is shown in Appendix B, which also leads to Eq. (9) when Yar Yo Kab’

K are real.
ba



3. TWO AND THREE COUPLED WAVEGUIDES AND IMPROVEMENT OF
MARCATILI'S THEORY

In this section, we present a combination of the vector formulation for
strongly coupled waveguides and Marcatili's theory which assumes two weakly
coupled waveguides. We also discuss the applications to three coupled wave-
guides used as either power transfer devices transferring power from one outer
guide to another or as power dividers. The electrooptic effects when these
devices are used as modulators are discussed.

3.1 Two Coupled Waveguides

3.1.1 Improvement of Marcatili's formulation

We start with the coupled—-mode equations

da
Py iyaa + iKabb (1ll1la)
db
I = lrgd + Kb (11b)
where
- -2
. = =2
- -2 )
Kab = (Kpg = KypCpp)/ (L = Cpp) (12¢)
- =2
Bpa = (g1 = Ky Cpp)/ (1 =€) (12d)

where the subscript 1 refers to waveguide a or 1, and 2 refers to waveguide b or

2, whichever is convenient.




One notes that in the theory of Marcatili {15}, (1) EiZ is assumed to be

zero in the above four parameters, (2) Kll and K22 are ignored, and (3) K12

and K21 are defined only for scalar fields (pure TE case). Thus that formula-
tion is almost the same as that for the conventional theory [2] and will lead to
significant errors if E&Z becomes larger than, say, 10 percent (C11 and C22 are
normalized to be 1) [9], [13]. One notes that an exact relation holds between
the conventional coupling coefficients [13],

-8

12 21
) — (13)

12 - 21 T

while a similar relation found in [15] is only approximate since the derivations
there have assumed the refractive index variation Aa(x.y) and Ab(x,y) << 1
(which is a good practical approximation). Using this relation, one can show

that the following relation is true using (12), (13) and ¢ S.EIZ = C21,

Kb ™ Kpa = (g 7 vp)e (14)

which is precisely the reciprocity condition, and it 1s the same as the power
conservation condition for a lossless case (Appendix B). We define the asyn-
chronism factor [15] in terms of the more correct parameters Yy Yb’ K and

ab

Kba in (12a)-(124d).

Y. &Y
8 :2}”-_1(—__—1-(:3:: . (15)
ab ba

Given the initial excitation at z = 0 of a two—coupled waveguide, a(0) =1,

b(0) = 0, we obtain [9], [13]



a(g) = f{cos p2 ~ 1 %-sin wz]ei¢2
iX 1
b(g) = —2 sin gy et
where
Yb + Ya
¢=—.——2——-—
/2
b=/ K b
Yp " Ya
Aa 2 .

It is easy to show also

|/

or

K -]
- a _ Eh - 6 +35 = esinh cs .

ab

The solutions (l6a) and (16b) can be written as

a(g) = {}os {}Kabea1(1+52)l/€] -

(1+5

ei¢2

sinh-lzk

2)1/2

(16a)

(16b)

(17a)

(17b)

(17¢)
(18)

(19)

si [/k K z(1+52)1/2]}

(20a)

b(g) = & E——— sin [/K_K 2 (145212 QLo (20b)

1+52




The output power Pa in waveguide a when waveguide b terminates at z = ¢ is

obtained using

(a) (b)

(x,y)

’

Et(x,}’,z = 1) a(l)E (x, Y) + b(l)z

) u(a)E(a)n(x,y)

n t

(a)

n=l

(b)(x,y)

4

Bt(x,y,z = 2) a(l)H (x,y) + b(2)H

2 (a) (a)n(x’y)

n=l

(21a)

(21b)

(22a)

(22b)

where the expansion in (2la) or (22a) is in terms of individual waveguide modes

and in (21b) or (22b) is in terms of all the guided and radiation modes of wave-

guide a alone since they form a complete set {9]. Multiplying (21) by H

integrating over the cross section, one obtains

uia) = g() + Clzb(l) .

Similarly, one finds

via) = a(e) + C, b() .

These boundary conditions at z = 0 and z = £ follow very closely those in

[15]. The guided power due to the first mode 81 in waveguide a is, thus,

(a) §a)* 1 /f B(a)l . Ega)l-idxdy]

P, =‘— Re(u;

1-c¢,C -1-
=1 - 12721 eZSinh CG [/K K 2(1 + & )

1/2
3 1
1 + 8

(a)

and

(23)

(24)

(25)
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using Eqs. (20), (23) and (24). A similar procedure for the output power in

waveguide b when waveguide a is terminated at z = 2 leads to

Re| + C** *]
Pb e (C21a b)( 122 + b )

(26)
1 -¢C,.C
12721 2 —————
C12C21 + ——-i—+—62——" sin (/Kabeal(l + §

2)1/2)

These results are very similar to those in [15] except the parameters are
defined in terms of the more accurate parameters Ya’ Yb’ K

ab

3.1.2 Numerical results for two strougly coupled waveguides

and Kba'

In Figs. 1(a) - (d), we show numerical results for two coupled Ti-diffused
LiNbO3 channel waveguides modeled as two coupled slab waveguides (which 1is
possible using the effective index method [11l]) with the refractive index in

An

waveguide a, a, = 2.2 + 5 the effective refractive index in waveguide b,

n, = 2.2 - %ﬂ, where the refractive index difference

An

[]
=]
1
=

a b (27)

is proportional to the externally applied voltage V across the two waveguides.
The refractive index outside the two waveguides is assumed to be constant,

ng = 2.19. The waveguide dimensions are da = db = 2 ym; the edge-to—edge
separation t = 1.9 ym. The wavelength X 1s 1.06 ym. In Fig. 1(a), the
asynchronism § is plotted versus the refractive index difference. We see
clearly that |§| is linearly proportional to |An|. The overlap integrals

C12 (dashed line) and C21 (dotted line) with their arithmetic average ¢ (solid
line) are shown in Fig. 1(b), where they vary between 0.168 at An = 0 to around

0.178 which do not satisfy the condition in [15] for weak coupling (c < 0.1).
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The numerical results for the propagation constants are calculated with more
than 7 digits of accuracy, and the energy conservation law [14] is also checked
to be valid with errors always less than 10-7. (In [14], two energy conser-~
vation violation factors have been defined and are used to check the numerical
accuracy of the results.) Figure 1(b) differs slightly from the qualitative
drawing of [15] with a range of variation in the overlap integrals around (0.178

- 0.168)/0.168 = 6.0 percent. The coupling coefficients K Kba’ and

ab’
/Kabea are shown in Fig. 1(c), which agree well with the qualitative results of
[15]. The output powers Pa (s0lid curve) and Pb (dashed curve) are shown in
Fig. 1(c). They do agree very well with the qualitative drawing of [15]. One

notes that the minimum of Pa does not occur right at An = 0 (where P, = 1.0) due

b
to the cross—talk problems which are discussed in Section 4. The power Pa

actually goes to almost zero (P_ = 9,00051 = 33 dB) at An = -0.0002, where

Pb reduces to 0.9723., The asymmetry of Pa and the symmetric properties of

Pb versus An or the applied voltage agree very well with what has been presented
in [15). However, our numerical approach provides very good numerical results
even for the strongly coupled case with ¢ > 0.1, while the theory of [15],
although taking into account the asymmetry properties of coupled waveguides, is

limited to weak coupling cases.

3.2 Three Coupled Waveguides

Let us consider a symmetric case for which the two outer waveguides are
identical. Solutions for this case have been obtained in [10], [11], and [14]}
and will not be derived here.

3.2.1 Power transfer devices

When used as power transfer devices, the three coupled waveguides are

assumed to have an initial excitation at z = 0



a(Q) =

OO -

and the input power P is easily found to be 1,

IN
The solutions at position z are found to be [10], [11]

2m,, - 4 1%2
-1 Yz _ 22 Yz 2 iy,z
al(z) 3 (cos > i ———:F———— sin 5| e + e 72

2m
az(z) = i wZI sin (%5) ei%z

and

2m,, = ¢ 12,
a3(z) = % (}os %ﬁ -1 ——3%———— sin %%] e 2. eiYZz

where

3
v =Sy +omyy - my))" + 8wy omy,

$ = my tmytomy,

and the three propagation constants of the supermodes are

12

(28)

(29a)

(29b)

(29¢)

(30a)

(30b)

(31a)

(31b)

(31c¢)
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where the matrix elements m,, have been derived in [10], [11]), and [1l4].

1]

The output power in waveguide 1 at z = 2, where waveguides 2 and 3 termi-

nate, is

P = Re{[a,(2) + € ,a,(2) + € a,(W)]la (2) + Cy a,(2)

out,l (32)

*
*+ Cq,3,(0)1'}
following a similar procedure as in Eqs. (21) - (26). The output power at wave-—

guide 3 when waveguides 1 and 2 terminate at z = 2 is

Re{[c3la1(z) *+ Cyym,(2) + 2,(R)][C 4a (2) + c23a2(z)

P =
out,3 (33)

*
+ a3(£)] } .
When applying (32) and (33) to a power transfer device, one may need to assunme
lC13| and lC31| are small since waveguides 1 and 3 are not terminated.

3.2.2 Power dividers

When used as power dividers, the three coupled waveguides have an initial

excitation at z = 0,

0
a(0) =| 1 (34)
0

and the input power PIV can be found to be 1. The solutions at position z are

(10], [14]

al(Z) = 33(2) =1 m > (35a)

2my, - ¢ 122
22
az(z) = [fos‘gi + i ————;——— sin EE] e 2 . (35b)
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One finds the output powers in waveguide 1 and 3 to be equal using (35) in (32)
or (33) since the two outer guides are identical.

3.2.3 Numerical results for power transfer devices and power dividers

The three coupled waveguides considered here are assumed to be symmetric
with respect to the center guide. We assume the dimensions of the three wave-
guides to be d1 = d2 = d3 = 2 ym. The edge—-to—-edge separation of two nearby

waveguides t = 1.9 ym. The wavelength A is 1.06 ym. The refractive indices are

assumed to be

n, = n, = 2.2 + An (36a)

1 3 2

An ‘

where the refractive index difference between either one of the outer guides and
the center guide An = m -, is proportional to the applied voltage V. We
first plot the unnormalized asynchronism 212 T TY, versus the refractive
index difference An. One sees clearly at An = 0 the fact that all three guides

are identical does not imply the synchronism condition
2*{2 Sy T YT 0 (37)
is met. At An = 0, we find

13.0172261

<
—
[]

13.0138696

<
[}
[]

13.0094738

=<
w
(]

and

212 i Pl Pl 0.0010393.




15
Choosing the coupling length & to be fixed at LCO = 2n/w0 where

by = (Yl - Y3) at An =0 (38)

(dashed curve) as

we find the output powers P_. (solid curve) and P,

t,1 ut,3

shown in Fig. 2(b) when the waveguides are used as power transfer devices. Peak
power transfer from guide 1 to guide 3 actually does not occur at An = 0 as can
be seen from Fig. 2(b). This is due to the cross-talk problem when the syn-
chronism condition is not met. It occurs actually at 272 Yy T Y =0, i.e.,
when An = -0.00023. The cross talks are calculated in Section 4. When used

as power dividers, the three coupled waveguides are assumed to have a coupling
length 2 = w/¢o = LCO/Z. The output powers in guides 1 and 3 versus the
refractive index difference An are shown in Figure 2(c¢). Maximum output power
does occur at An = 0 for the power dividers.

In Figs. 3(a) and 3(b), we show the output powers P and Po versus

out,! ut,3

the coupling distance 2 normalized to L, = 21r/(Y1 - 73) for An = 0 (LC = 1,

co

does not go

c

in this case). Since the synchronism condition is not met, POut 1
’

to zero due to the cross-talk problems. Both P and P do not show
out,! out,3

periodic behaviors for the power transfer devices that have been discussed in

[10], [11], although only the magnitudes of lal(l)], |a2(£)| or |a3(2)| instead

of powers are presented there. This nonperiodic behavior is due to the

asynchronism (272 i PR £ %$ 0) of the three supermodes. When this condition

is met (it occurs at An = -0,00023), P and P do show periodic beha-

out,l out,3
viors as shown in Fig. 4(a), where LC = 21r/(Y1 - 73) is evaluated at that
An # O, However, the output powers for the power dividers always show periodic

functions because of the symmetry of the excitation and the waveguide structure

(only two of the three supermodes, Yy and Yy are excited). It is easy to see
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from Eq. (35) that the output powers will be periodic functions of the distance

2 for both Figs. 3(b) (2Y2 -y "3 # 0) and 4(b) (272 Y "3 = 0).
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4. CROSS-TALK PROBLEMS
Cross—talk problems have been investigated recently for two coupled wave-
guides [18] and three coupled waveguides [19] using either the conventional
coupled-mode theory or direct numerical approach for the propagation constants.
We apply the strongly coupled mode equations here to investigate the cross—talk
problems.

4.1 Cross Talks in Two Coupled Waveguides

In the design of two coupled waveguides, one usually chooses the coupling

length ¢ such that
$2 = nn/2 , n = odd integer (39)

and b(g) is maximum, a(g) = O provided that A = 0, i.e., two waveguides are
identical. One finds immediately that the output power in waveguide b is maxi-
mum. However, the output power in waveguide a is not zero because there is
still an overlap of fields between modes in waveguides a and b. This cross—talk
power is easily obtained by setting § = 0 in Eq. (25) as a conservative estima—

tion [18]

2
Extinction ratio Pa(s = Q) = C12C21 = C12 (40)

since C12 = C21 when two waveguides are identical. The formula (40) only pro-
vides a conservative estimation since it assumes waveguide a continues. In
reality, guides a and b may start to separate at z = g gradually. Thus, (40) is
only an approximation {18].

This result showing that the cross talk is proportional to the square of

the overlap integral agrees with that obtained in [18]. However, our numerical
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calculations show that for two-coupled GaAs waveguides with the dimensions

da = db = 2 ym, the edge-to—-edge separation t = 1.9 ym, the refractive indices
n, =n = 3.44, and the outside refractive index n, = 3.436, the cross talk is
-10 dB, which is close to =-12.6 dB of [18] but not identical. We believe our
number here is more accurate since we have calculated the propagation constants
B8, and 8, up to 7 digits (after the decimal point) of accuracy; the power con-
servation and the exact analytical relations are all checked so that the errors
are always less than 10—7. The studies of cross talks in [18], [19] assume
identical waveguides and the refractive indices are fixed (an = 0). One finds
using Fig. 1(d) that the cross talk P_ can actually be given by Eq. (25). At
An = ~-0,0002, the extinction ratio goes to zero! Thus a very good extinction
ratio can be obtained with a slight asymmetry introduced in the two waveguides
with An % 0.

4.2 Cross Talks in Three Coupled Waveguides

Three coupled waveguides have been introduced to decrease the cross talks
when used as power transfer devices from one outer waveguide to another.

However, the synchronism condition
vy =Y " Yv3 =0

needs to be satisfied; otherwise, the cross talks may be proportional to the
overlap integrals C12 and C23 of the two nearby modes instead of the two outer

guided modes C13. When used as power transfer devices, one chooses
2 = 21!'/(‘{1 - Y3) = zﬂ'/w (l’l)

or an integral multiple of g such that az(z) = 0, We find the extinction ratio

to be (using sin ¢g = 0)
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Extinction ratio = P

out,l
= -
s 2T 2 2212 "1 v
sin A L 13 cos L- A 3
(42)
222 "Y1 7 Y3} 2 2|3 T v T Y3
= gin 7( — y T + C13 cos 2 — )
LOURER &L Y1 T Y3/
and similarly, the output power
2y ~¥p T Y 2y, =y = ¥
ﬂgoserz. 1 \31[—]+C?« sinz[. % 1 Y 3 L3 (43)
out,3 L %%y = vs) J 1 (UL ST 2

This analytical result for cross talks 1s useful since it explains clearly

(1) 1f the synchronism condition is met,

2Y2 “Yy T Y3 *® 9
2
Extinction ratio = C13

which 1s expected.

(2) 1f the synchronism condition is not met, the first term will contri-
bute, and it will be proportional to the square of its argument if the
synchronism condition is only approximately met. For this case, we
show directly numerical results instead of using the approximate ana-
lysis in [19].

In Figs. 5(a) - (d), we illustrate the numerical results for a three-

coupled waveguide used as a power transfer device. The waveguide widths are
d; = 4, = d3 = 2 ym, the refractive indices are n, =0, * 0y = 3.44, and the
outside refractive index n, = 3.436 [19]. The wavelength ) is 1.06 ym. The
waveguides' edge-to-edge separations t are varied between 0.9 ym (near cutoff)

to 4.4 ym. In Fig. 5(a), the propagation constants of the three supermodes using
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the strongly coupled-mode theory are plotted and compared with those calculated
exactly from solving the multilayered (slab) structure numerically. One finds
very good agreement. A small discrepancy occurs for Y3 when that mode 1is close
to cutoff near t = 0.9 ym. The overlap integrals C12 (solid curve) and

C13 (dashed curve) are plotted in Fig. 5(b) where C12 is as large as 0.49, i.e.,
coupling is indeed very strong. (C13 = 0.125 at t = 0.9 ym is also large). The
coupling length Lc = 21:/(*{1 - 73) is plotted in Fig. 5(c) versus the waveguide
separation t. One finds the extinction ratio P at, 1 due to cross talks as shown
in Fig. 5(d) decays as the waveguide separation t is increased. This has been
discussed in [19] for a fixed separation £ = 1.9 um using a different approach.

Qur result, at that separation, gives Po = 0.1082 = -9.66 dB which is

ut,l
actually higher than =12 dB given in [19] where the overlap integral between the
two outer guides C13 (= 0.0435) has been ignored. The results here should be

more accurate since the exact propagation constants y,, Y,, and Yy at t = 1.9 ym

are calculated accurately up to 7 digits after the decimal point and are also

confirmed by the strongly coupled-mode theory. Taking the ratio of the extine-

tion ratio Pout 1 to the square of the overlap integral, C%O, one finds
? <
2
Pout,l/clz # 0,78 at t = 0.9 ym; 1.08 at t = 1.9 pm; 1.42 at t = 2.9 ym, and

1.75 at t = 3.9 pym. Thus one may only say that the extinction ratio is

roughly proportional to the square of the overlap integral C12' The propor-
tional constant estimated in [19] is =~ n2/2 = 4.9 for weak coupling and

4.9/3 = 1.63 for strong coupling. The latter seems to agree better with our
results since the coupling is pretty strong here. Thus the factor w2/2 is not
appropriate for the example presented in [19]. The strongly coupled-mode theory

should be applied when numerical accuracy is essential.




21

5. OPTICAL WAVELENGTH FILTERS
Optical wavelength filters using waveguide couplers have been reported for
= InP material

Ti:LiNbO3 and InGaAsP - InP materials. The In xGa As

1-x °x ypl-y
system is especially interesting because of its applications at 1.3 ym or

1.55 pm wavelength and its potential for optoelectronic integrated circuits.

The experiment reported in [8] has two coupled waveguides: one has a narrower
guide width da = 0.42 ym, but a larger refractive index n, (obtained following
f21]) with Vg ™ 0.127; the other has the guide width db = 0,91 pym and Yy = 0.078
(nb is also obtained following [21]). The Ga mole fraction X, (or xb) depends
on the As mole fraction y, (or yb) for lattice matching [21]. The input power
is assumed to be 1 in waveguide b. The results of a direct numerical approach

have been shown in [8] and compared with the experimental data. We have applied

the strongly coupled-mode theory using Eqs. (25) and (26) (exchanging a and b

since the input is in guide b instead of in a) and compared our theoretical results

with the experimental results in Fig. 6. The agreement is very similar to that
in [8]). The parameters reported in [8] used for the theoretical calculations
are within the measurement accuracy. No detailed explanations are given for the
small discrepancy between the results for the theory and the experiment. We
think the possible reasons may be (1) there is still some difference between the
theoretical model in [21] and the experimental values for the refractive index,
and (2) the losses in the waveguides are not taken into account. However, the

comparison shown in Fig. 6 does show very good results.
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6. CONCLUSIONS
A strongly coupled-mode theory [9) - [11], [13], [14] has been presented and

combined with the theory of Marcatili [15] for the two coupled waveguide case.
The applications to two— and three-waveguide couplers, including power transfer
devices and power dividers, have been investigated. This coupled-mode theory is
applicable to very general cases for parallel dielectric waveguides with strong
coupling and modes of general polarizations. It also accounts for the asymmetry
of the waveguides and satisfies the energy conservation law and the reciprocity
theorem self-consistently [13], [14]. The cross—talk problems in two and three
coupled waveguides and their applications as optical wavelength filters have

also been investigated and compared with the experimental data [8].
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APPENDIX A

THE MATRIX ELEMENTS C_ , C_ , K ,i? AND THE FIELD EXPRESSIONS
P& P4 P P4

(a) Matrix elements for the overlap integrals.

S T ') I €S B
cpq 5 f{.z ¢ X H P ezdxdy (Al)

pq --% (C._+c_)

Pq qp
(A2)

——
~

c
qp

(b) Matrix elements for the coupling coefficients.

“Conventional™ coupling coefficients:

K=/ ael®) Ezgp)-zgq)- Eip)aiqﬂ dxdy (43)

Ae(q) = e(x,y) - E(q)(x,y) (Ad4)

where £(x,y) is the permittivity function of the multiwaveguide system and
e(q)(x,y) i3 the permittivity function of a single waveguide q.

New qu used in Eq. (4) of this paper [13], [14]:

(p)
SEE ! ael®) [zip)-géq)- = Eip)Eiq)]dxdy . (A5)

(¢) The field expressions for the supermode.

The transverse components are

X a (2B (x, ) (A6)



- (p)
llt Eap(z)ﬁt (%x,y)

The longitudinal components are

(p)
- e glp)
E, Eap(Z) = E, (x,y)

= g ap(z)ﬂip)(x,y) .

24

(A7)

(A8)

(A9)
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APPENDIX B
A FORMAL TREATMENT OF TWO COUPLED WAVEGUIDES FOR A LOSSLESS SYSTEM

The coupled-mode equations are assumed to be of the form in general:

& a(2) = ty,a(z) + K b(2) (31)
g; b(z) = 1v,b(2) + 1K, a(2) (B2)
whera we have assumed for the transverge fields
(a) (b)
E, = a(z)E."" + b(2)E, (B3)
H, = a(z)Hia) + b(z)Hib) , (B4)

(a) E(b), H(a) and H(b)

¢ B¢ N N are all real. Thus, one

and the transverse components E

finds that v , Y K and Kb are all real. Power conservation leads to
a ab a

b’

Id -dl *'.
0 = 5~ P(2z) = 3~ 7 Re HEtXilczdxdy

. d * - Rk *
ERe {aa” + ab C,p + ba Elz+bb ]
(BS)
= 9 [aa* + (ab* + ba®)T + bb”)
dz
* - -
= ab i(Yac - Ype t Ky, - Kab)
% - -
+ ba i(ch = Yo+ Kab - Kba)
where we have used Eqs. (Bl), (B2), the fact that (’:12, 521 are real, and
E + nk
- ity
c - _—2_—
- (B6)
= C L]
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Since both a and b are arbitrary, we conclude that the coefficients in front

%* *
of ab and ba are zero and obtain:

Kab - Kpa ™ (Ya - Yb)-'E ’ (B7)

which i3 the general lossless condition that the four parameters in the coupled-

mode equations (Bl) and (B2) must satisfy.
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FIGURE CAPTIONS
The asynchronism § is plotted versus the refractive index
difference of two coupled waveguides, A n = nyz - np, which is

proportional to the applied voltage V.

The overlap integrals Cy7 (dashed line), C2; (dotted line) and

C = (Cy2 + C21)/2 (solid 1line) are shown.

The coupling coefficients Ky, Kpg and /K pKap are plotted
versus An.

The output powers in guide a, P, (solid curve), and in guide b,
Pp (dashed curve), are plotted versus An. The parameters are
da = dp = 2 um, waveguide edge-to-edge separation t = 1.9 um,
wavelength A = 1.06 pym. n, = 2.2 + An/2 np = 2.2 - An/2.

The outside refractive index ngp = 2.19. The coupler length

¢ = 0,5811 mm,

The asynchronism 2y9 -~ y] - y3 of three coupled waveguides are
plotted versus the refractive index difference An = nj - np
which is proportional to the applied voltage. The parameters
are all similar to those in Fig. 1. d} =dg2 = d3 = 2 um.

t =1.9 ymy A = 1.06 ym, n} = n3 = 2.2 + An/2, np = 2.2 - An/2.
Leo = 0.8105 mm.

The output powers Poyr,1 (solid curve) and Poyr,3 (dashed curve)
are shown for the power transfer devices with input power
Piy = | 1n waveguide 1.

The output powers Poyr,] = PoyT,3 are plotted versus An when the
three waveguide couplers in (a) are used as a power divider.

The output powers Pgyr,] (solid curve) and Poyr,3 (dashed curve)
are plotted versus the coupling distance £ normalized to Lc for
a power transfer device. The same parameters from Fig. 2 are
used except that An 1s fixed to be zero and & is varying.

The output powers PoyT,] = Poyr,3 are plotted versus the nor-
malized distance 2&/Lg when the three coupled waveguides in
Fig. 2(c) are used as power dividers. (An = 0, & is varying
here.)

The output powers Poyr,] (solid curve) and Poyr,3 (dashed curve)
are plotted versus the normalized coupling distance L/Lg for the
case An = =0.00023 where 2y2 - vy - y3 = 0.

Similar conditions hold as 4(a) except that the device is used
as a power divider.
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Figure 6.

(a)

(b)
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(d)
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The propagation constants of the three supermodes using the
strongly coupled-mode theory (dotted lines) are compared with
the exact numerical calculations (solid lines). The waveguide
edge—to—edge separation t is varied. The parameters are

dy = dy =d3 =2 ym, n} = np = n3 = 3.44, ng = 3.436.

A =1.06 ym.

The overlap integrals Cjp(=Cy;) and C}3(=C3}) are plotted versus
the wavelength edge—~to-edge separation t.

The coupling distance Lg = 2a/(y; - y3) is illustrated.

The output power Pgyt.3 (dashed line) in the guide 3 and the

extinction ratio POUT:I (solid line) due to cross talk are
shown.

The output powers of two coupled InyGaj-yxAsyP)-y = InP wave-
guldes used as an optical wavelength filter. Tge input power is
assumed to be 1 in waveguide b. The theoretical results for
output powers at waveguide a, P, (solid curve), at waveguide b,
Py (dashed curve), are compared with the experimental data
(circles) for P,e.
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ABSTRACT A strongly coupled-mode theory for reciprocal anisotropic

multiwaveguide system is derived. The general reciprocal anisotropic
medium i3 described by a symmetric permittivity tensor that can have non-
zero off-diagonal elements. The derivation is based on the generalized
reciprocity relation. The coupled mode equations are applicable to both
lossy (gain) and lossless systems. For the special case of lossless
systems, it is sho;n that the matrices in the coupled mode equation are
Hermitian so that energy conservation is obeyed exactly. For the special
case of a single anisotropic waveguide, our results also reduce to the pre-
viously derived solutions by Marcuse. The strongly coupled-mode theory in

an anisotropic multiwaveguide system is also illustrated with numerical

examples.
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1. Introduction

The application of the coupled mode theory to integrated optical devices
such as waveguide couplers [1]-[3], laser arrays [4]-[5] and optical filters
[6]-[8] has been well known. Although it has long been recognized that
the previous coupled mode theory is only applicable to weakly coupled
systems [3]-[4], significant improvements for strongly coupled waveguides
have only been developed recently in a series of papers [9]-[17]. The
major improvement is the inclusion of the overlap integral Cpq between
modes of different waveguides that have been neglected in the conventional
theory.

Many of the integrated optical devices are made of materials that are
anisotropic [18]-[22]. 1In anisotropic coupled waveguides, numerical solu-
tions are usually difficult to calculate. In this paper we generalize the
strongly coupled mode theory to an anisotropic medium in multiwaveguide
systems. The strongly coupled mode equations are derived for a general
reciprocal anisotropic medium. The general reciprocal anisotropic medium
is described by a symmetric permittivity tensor that can have nonzero off-
diagonal elements. The derivation is based on the generalized reciprocity
relation [14]-[15]. 1In Section 2, the generalized reciprocity relation is
extended to an anisotropic feciprocal medium. In Section 3, we briefly
discuss the mode solutions and mode orthogonality relations for a general
reciprocal anisotropic medium. In Section 4, the coupled mode equations for
a general reciprocal anisotropic medium are derived for multiwaveguide
systems. Expressions for the overlap integrals and the coupling coef-
ficients are given. The derived c0up1ed—m04e equations are applicable to

both lossy (gain) and lossless systems. In matrix notation, the coupled

mode equations are of the form




c% = 1Qa

where E is the overlap integral matrix. The elements of the vector a
represent the amplitudes of the modes ap(z) in the waveguides, which can be
modes of different polarizations in the same waveguides and/or different
waveguides. Two special cases are examined next. In Section 5, the spe-
cial case of a lossless system is studied. It is shown that in this case
both E and 3 are Hermitian matrices. Hence energy conservation is obeyed
self-consistently. In Section 6, the special case of coupling of modes in
a single waveguide is examined. In this case, the matrix 2 is diagonal. It
is then shown that in this case the coupling coefficients are identical to
those previously derived by Marcuse [19]. In Section 7, the coupled mode
theory is illustrated with a numerical e#ample using Ti-diffused LiNbO3
waveguides. The application of voltages introduce:nonzero off-diagonal
elements in the permittivity tensor. Thus there is coupling between the TE

and TM modes in addition to coupling between modes of different waveguides.



2. Generalized Reciprocity Relation for Anisotropic Medium

Let E<1>, E<1> be the solution to Maxwell's equations and the boundary

= <2>
conditions in a medium e<1> (x,y) for the whole space and E , and

H<2> be the solutions to Maxwell's equations and the boundary conditions in

another medium ;<2> (x,y). Both media are reciprocal so that the permit~

tivity tensors satisfy the relations

Ty = Py (1)

:<2>T(x,y) = z<2>(x,y) (2)

where superscript T denotes transpose.

It is straightforward to show that

> <2> <2> <1>

< H -B < H <2>

v . &<l A> | =2<2> | =dy g 1)

)= iw E « (e

with the same procedure used for deriving the Lorentz reciprocity relation.
The time convention exp(- iwt) is used in this paper. When applied to a

cylindrical geometry, the generalized reciprocity equation (3) becomes [14]

%; [ axdy 2 + @D % 58P - gD gD

2>

PGPy - P .S )

= iw ff dxdy E




3. Mode Solutions in Reciprocal Anisotropic Medium
and Mode Orthogonality

In this section, we review the mode solutions and orthogonal relations

in an anisotropic medium. In a reciprocal anisotropic medium,

€ x €y €z
€ = £ € 5
€ exy vy yz (s

€ € €

xz yz 2z

The following decomposition is convenient for analyzing waveguide modes

P e +e +¢ +e (6)
=
€
€ t Stz fz¢ T %2z

where subscript t denotes transverse components.

Zt = e Rt (I IR e 99 (7
th = exz'ii +‘syz y2 (8)
:zc = Zc: (9
Zzz = 2, (10)

Both €, and €,, are symmetric while the transpose of €z is €,c and vice
versa. The longitudinal field components can be expressed in terms of the

transverse field components as follows

1
Hz inu vt x Et
E = —— (v xH +1iwc_+E} (11)
z we,, t Tt 2t t

If Z (x,y) is transiational invariant in the Z direction, then mode solu-
tions exist. For modes propagating in the +z direction, the modal solutions

of the electromagnetic fields are



E(Q) (x,y) equz

H(q) (x,y) el8q?

where q is the mode index. There also exists a mode with the same propa-

gation counstant Bq and propagating in the -% direction. These are denoted
by
g(-a) (x

s Y) e"i qu

H( -q ) -1 qu

(x,y) e .

For lossless systems, the two sets of mode functions (E(q), H(q)) and
(E(-q), H(-q)) have a simple relation (Section 5, equations (31)-(34)).
However, for a general lossy (gain) reciprocal anisotropic medium, there is
no simple relation relating the two sets of solutions [19], [23]. (If

th = 0 and ch = (0, a simple relation such as that in [15] for z—inversion

symmetry also exists.)

Using the generalized reciprocity relation (4), mode orthogonality

relations can be derived readily. Let 2<2> = 2<1> = 2, (E<1>, H<1>) =
(E(q), H(q)) exp (quz), and (E<2>, E<2>) = (E(p), E(p)) exp (ispz). It

then follows that

5 (@, g(P)_ g(P), gla)y _ o
[[ dxdy 2 « (B "'x H ™'- B "'x B ") 0 (12)
for Bp # - Bq. Similarly, the following orthogonality relation

[ dxdy % . (Eiq)x ai’P)- sg‘P)x niq)) =0 (13)

also holds for 8. # B_.
q p




4, Coupled Mode Equations

Consider a multiwaveguide system (Figure 1) with permittivity : (x,y).
Also let ;(p)(x,y) be the permittivity for a single waveguide p. We use

the generalized reciprocity relation in the following manner. Let

T2 () = 2 (x,y) (14)
<2 . (zg"’)+ ,_i—v)) e 18pz (15)
B2 . (P 5P 18y e

be the permittivity and mode solution for a single waveguide p. For <1> we
let

2<1> (x,5) = € (x,y) _ 4 (17)

of the multiwaveguide system (Figure 1). The transverse field components

of the multiwaveguide system are then approximated by linear superpositions

of the individual waveguide modes of single waveguides.

N

B = ] 2,(2) 2V (x,y) (18)
q=1

a> ()

Bt = qzl aq(z) ﬂc (x,y) (19)

where N is the number of modes that enter into the approximation. Note
that each single waveguide q can contribute more than one mode (e.g.,

TEO and TMO modes ).

It then follows from Maxwell's equations that the longitudinal com-—
ponents are then given by the expansion (Appendix A)

N a (z)
E<l> = z q

(@) g(q), ,=(q) _ = (q)
z B, (e T gg) t B (20)

q=1 €22 {ezz 2t



B 2 2,(2) LY (21)
q=1

Substitute (14) - (21) into both sides of the generalized reciprocity rela-
tion (4). The left-hand side of (4) gives

N

-1 @@ e ec (22)
q=1

where

1 1 - -
Cpq iy ff dxdy Z o [-Eiq)(x,y) x HE p)(x,y)

( -p)
t

(q)

(x,y) x B "7 (x,y)] (23)

is the overlap integral which generally is not zero. The formulation with
the neglect of the Cpq terms with p # q has been referred to as the conven-—

tional coupled mode theory. The right-hand side of equation (4) gives

-1 ? 4K a (z) e tBp? (24)
q=1 3P @
where
(q)
(-p) =(p) = €2z (q)
v BT (e &) = ' E

(p) -
o, BT ED o gy g

t € zt zt
zz

(-p) =(p) _ = ()
t B, (e e " €00 ° Bt

(p)
(Ezg - €

(25)




Equating (22) and (24) gives the coupled mode equation

N da (z) N
C 4. ( N 26
where
Q = K +8 C (27)
Pq qp P Pq

The coupled mode equation (26) can be conveniently cast in matrix form,

c g:—i—z-)—-iaa(z) , (28)

where the matrices C and Q are of dimension N x N and the column vector a

is of dimension N x 1.
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5. Coupled Mode Equations for Lossless Multiwaveguide Systems ‘

The lossless (gain) medium is a special case of the general lossy
system when the loss approaches zero. In this section, we shall derive the
coupled mode equations for lossless systems. It will be shown that in this
special case the C and 6 matrices of the last section are both Hermitian so

that energy conservation is obeyed exactly.

For a lossless reciprocal anisotropic medium for both : and :(q)’ we
have
L (29)
z(q)T* - Z(q) (30)
Let

t z

t b4
be the field solutions of a waveguide in a single waveguide q with real Bq.
Then by taking complex conjugates of the Maxwell equations, it follows that

EDF 4 gOF ) i8gz
t z

ala)* _ o(q)* ~i8qz
( N H ) e P4

is also a set of modal solutions and is propagating in the -Z direction
with a propagation constant Bq. In this case, the modal fields propagating
in the —-Z direction are simply related to those of the +Z direction as

follows




AR (31)
R (32)
Bi-q) - Biq)* (33)
Hi-q) - - B:q)* (34)

Using (31) - (32) in (23), it follows that

Pq 4 t t

Hence

cC_=¢C (36)
Pq qp

and C is Hermitian.

To show that Q is Hermitian, we make the following choices for the

generalized reciprocity relation (4). Let

=<1 =(q) (37)

2. (Eiq)'+ Biq)) o1BqZ (38)

RS (niq) . Hiq)) e18qz (39)
and

:(2) - Z(P) (40)

2> (Eip)*+ Eip)*) o~ 18p2 (41)

% - (-aﬁp)*— aip)*) e 18pz (42)

11



Then, from (4) it follows that

(8y = 8) Cpq = =4[] dxdy g(P* . @0 2, | g@

= - 201 axay {g{P*. @(P- W) L gD

(®*_ =) _ =(q) (9)
+ Et . (etz €, ) . Bz

(p)*  =(p) _ =(q) (q)
* B e (el me ) o By

s P (D)L 0y gl (43)
z zz zz z

*
Using (31) - (34) in (25), the quantity qu - qu can be calculated.

After a moderate amount of algebraic manipulations, it can be shown that
*
qu - qu is equal to the right-hand side of (43). Hence,

’ *
- C_ = K _-K 44
(B = 8p) Cpq P pq (44)

It then follows from (27), (36) and (44) that

=0 (45)

Hence, Q is Hermitian. It is straightforward to show that these relations

(44) and (45) reduce identically to those of the isotropic waveguide case

in [15].

12

Energy conservation can be demonstrated as follows. The power P(z) in

the multiwaveguide system is

1 " *
P(z) = 5 Re [[ dxdy £ . E x B (46)




Using (18) and (19) in (46) gives

N *
P(z) = | aacC 47)
P,q=1 P 9 pq

Using (28) and the fact that both C and Q are Hermitian, it follows that

dP/dz = 0 and the power P(z) is independent of z. Energy conservation 1is

obeyed.

13
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6. Coupled Mode Equations for Single Waveguide System

(p) _ =(q)

In a single waveguide system, we have Z = € and ; is the per-
turbed permittivity that causes coupling among the modes in the single
waveguide. The coupled mode equations for a single waveguide with a general
reciprocal anisotropic medium were derived previously by Marcuse {19]. 1In
this section, we shall show that for this special case, our results are
identical to those in [19].

Let

=(p) | 2@ | 3, (48)

(p)

denote the unperturbed permittivity of the single waveguide. Then E and

E(q)

are the mode solutions of :' with propagation constants Bp and Bq.
Hence they obey the mode orthogonality relation of (13). Using the mode
orthogonal relation, it is easy to see that E as given by (23) is a diagonal

matrix. Hence

C =C § (49)
A P PMq

where qu is the Kronecker delta. The coupled mode equations become

da
P _ =
Cp ( 2" 18, ap(z)) i E Kop aq(z) | (50)

for p=1, «o., N. Using (48) in (25), it follows that some of the terms

are cancelled and the expression for qu becomes




qp

(-p)
+B C.

(-p), “zz
+Et .

(-p),

z

+ B

+ E(-p)
4

K ==-3 [ dxdy P, (e, - &) - Bé“)

t

B -8 )

tz tz = (9)
£tz tZ (G -% ).B
€2 zt zt t
(4] '
zz =' _ = R C)
e (e ~ &) ° E,
zZ
€! '
2z = = (q)
— (e - ¢ ) . E
€,, 2t zt t
€t '
2 ey, 6 BV
zZ

15

(51)

It can be shown (Appendix B) that (51) is identical to equation (46)

of Marcuse [19].
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7. Numerical Example

In this section we 1llustrat; the coupled mode theory developed in the
previous sections with a numerical example using Ti-diffused LiNbO3 wave—
guides. Consider two coupled slab waveguides, a and b, of thicknesses,
da and db’ and edge to edge separation, t. Voltages Va and Vb are applied
respectively to the two slabs. The uniaxial axis is assumed to be in the y
direction for both guiding and substrate regions (Figure 2). 1In the
following analysis we shall include four modes coupling (N=4). The four
modes are TEO, TMO of guide a and TEO and TMO of guide b, which are denoted
as TES, TMS, TEE and TMg with the corresponding amplitudes al(z), az(z),

a3(z) and aa(z) in the same order. Then we make the following substitu-

tions. Let :a represent the permittivity profile of a single waveguide a and

€y represent the permittivity profile of single waveguide b with zero

voltages.
(
n2 0 0
oa d
€ 0 2t 0 for |x| <2
o ea 2
0 0 n2
oa
S
€, for |x| > 3
L (52)

for guide a, where

n 0 0
0
T = e 0 n> 0 (53)
c (o] e
0 0 a2
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For guide b
r n2 0 0
ob
0 nl o for |x - x| < %
€ eb or |x *p 2
2
0 0 nob
;-
d
= b
€, for |x xbl >—2—
.
da db
with xb =t + E—-+'5— (o4)

Then, let 2(1) = Za and (E(l), H(l)) = (E, H) of the TEO mode of :a' Also

let ;(2) = Za and (E(z), H(z)) = (B, H) of the TMO mode of :a' Note that
(1) =(2) =(3) _ 2(4) .=

and ¢ are equal to :a' Similarly, € € and let

and (Y, 8%y = (&, B) of

both €
(3(3), 3(3)) = (E, H) of the TEO mode of ;b

the TMO mode of €y

The permittivity Z is then taken to be the permittivity profile of the
multiwaveguide system with voltages Va and Vb' Based on the charac-
teristics of LiNb03, the permittivity E(x,y) can be approximated [22] by the

following expressions (55) and (56).
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Let
2 n_ry =X -zt nz nZ -1 0 )
oy oy 22 d S1 oy ey d
Y Y
\
=' - _ Y 2 2 J 2 0
eY € 51 "oy ney dY ney
2 4 Y _Y
+
0 0 oy T Moy 22 1
. .,
(55)
with vy = a, b. Then
(= for |x| < 33
€a 2
= J ="' db
e = €y for |x-xb| <—i'
' e otherwise (56)
k [

In the numerical results to be illustrated, we have assumed the input
wave to be the TMO mode of guide a. Hence the coupled mode equations are
solved and the initial conditions are set by letting aq(z=0)=1, for q=2 and
0 for q=1,3,4. The mode functions are normalized such that C_ =1,

q = 1,2,3,4, 1In the calculations, we have tested the power conservation with
equation (47). Power conservation is checked numerically to within 10-10
percent. The reason for using high accuracy is because the cross-
polarization powers can be very small (of the order 10“4 or less). Thus

this high accuracy based on double precision is only for self-consistent
check. The transfer efficiency of the two modulators of Figure 3 are con-

sidered. Note that the two directional couplers have identical input

guides but different output guides. The coupling section is of length £.

By matching the field solution to the output guides, it then readily

follows that {131, [17]
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4
TEQ ' Yk *
P = Re C..C . a(2)a(2)
a (j,Eal 13 "kl 73 k ) (57)
Mg 4 )
P = Re a (1) a, (z)
a (j’E_l 2j k2 j (58)

for the output power of directional coupler 1. Similarly, the output

powers of directional coupler 2 are

4
TEg
P = Re a, () (z)
b (j’E 3j k3 a0 3 ) (59)
T™o ' " x *
P = Re C,. C, a.(2)a(r)
(j,E=l 45 kb4 7] k ) (60)
where ' 1 s o(q), (p)*
Coq ™ 5 [[ dxdy 2 « (B " x B7) (61)

In the numerical results of Figures 4 to 6 we have used the following

parameters: dg =dy = 1.6 ym, t = l.6 ym, A = 0.633 ym, ng = 2.281,

a b -12
Ng = 2.195, Npgag =® Ngph = 2.286, Neg = Ngh = 2.2, r22 = r22 = 3.4 x 10 m/V,

a b -
and Tgy = T, = 28.0 x 10 12 m/V. In Figure 64, P:MO and P:MO are plotted
as functions of the coupling length £ for V5 = Vy = 0. There are no off-

= TEQ TEqQ

diagonal elements for e(x,y) in this case and P; = Py = (), so that there
is no coupling to the TE modes. We note that when the output power in
waveguide b is maximum at around & = 700 uym, the output power in waveguide
a is not zero. This cross-talk 1is due to the overlap of fields between

modes in waveguide a and waveguidé b [17]. The computed overlap integral

C24 in this case is equal to 0.1753076 which 1is outside the region of vali-

dity of the conventional coupled-mode theory. The computed coupling coef-

-2
ficient KZA = Kaz = (0,2284878 x 10 ~.
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In Figures 5 and 6 the output powers are plotted as functions of the
modulating voltage V with Va = V and Vb = =V and £ = 700 ym. For the para-
meters chosen and a voltage range of -20 volts < V < 20 volts, there is
appreciable transfer of power between the two guides. The results of
Figure 6 indicate that the transfer of power to the TE modes is of the order
of =40 dB to -30 dB with prEO larger than PZEO because of the larger

b

overlap of the fields between the TMO mode of guide a and the TEO mode of

guide b.
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8. Conclusions

The strongly coupled-mode theory for a reciprocal anisotropic medium in
multiwaveguide systems has been derived in this paper. Both lossy (gain)
and lossless cases are considered. In general, the TE and the TM modes of
separate waveguides are coupled due to the anisotropy of the medium. For
the lossless case, the energy conservation is shown to be satisfied in this
coupled mode formulation. For the case of a single anisotropic waveguide,
we show that our results reduce identically to those of Marcuse [19]. The
numerical results for two coupled anisotropic waveguides with both TEO and

TMO mode couplings have been illustrated.



Appendix A: Derivation of the Longitudinal Field Components

To derive the expansion of the longitudinal field components as given

by (20) and (21), we note that

> _ 1
z we

A T 1)
zz (Al)

Substitute the expansions (18) and (19) in (Al) and note that for the qth

mode of waveguide q

(@) . _ =(q) (q)_ (q) 5(q)
/ Vt x Ht iw € * Bt iw €,z Ez (A2)

One then obtains (20). To derive (21), note that

<1> 1 <1>

Hz " iy t X Bt (a3)
(@) (q)

Vt x Et iwp Hz (A4)

Substituting (18) in (A3) and using (A4) gives (21).




Appendix B: Comparison of K lrin (51) with the Result of Marcuse [19]
q

In comparing (51) with equation (46) of Marcuse [19], it is to be

noted that the permittivity tensor elements are defined differently.

= =(m) _ =(m)
+
¢ €2
where superscript (m) denotes Marcuse. Also

=g +

€e € 7 €tz
+

ez ezt szz

(1)

(B2)

(83)

With the above substitution in equation (46) of [19], it can be showm,

after a moderate amount of algebra, that the coupling coefficient qu

identical to expression (51).

is
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Figure Captions

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

(a)

(b)

(e)

A single waveguide p described by Z

space

A single waveguide q described by ¢

space
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(p)(x,y) for the entire

z(q)(x,y) for the entire

A multiwaveguide system described by :(x,y) in the entire

space.

Geometric configuration of two coupled anisotropic wave-

guides for the numerical example in Section 7.

Directional couplers with identical input guides a

but dif-

ferent output guides a (directional coupler 1) or b

(directional coupler 2).

The output powers in the TMO mode

the TMO mode of guilde b, P:MO, as

length 2 without applied voltage,

The output powers in the TMO mode

the TMO mode of guide b, P:MO, as

voltage Va = - Vb =V,

mode

The output powers in the TEO

TEqg

TE_. mode of guide b, Pb

0

1t vV =-V =1V,
voltage V_ b

of guide a, P:MO , and in
functions of the coupling

vV = 0.

of guide a, PZMO, and in

functions of the applied

of guide a, P:EO , and in

, as functions of the applied
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